Metamath Proof Explorer


Theorem dff14i

Description: A one-to-one function maps different arguments onto different values. Implication of the alternate definition dff14a . (Contributed by AV, 30-Oct-2025)

Ref Expression
Assertion dff14i
|- ( ( F : A -1-1-> B /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( F ` X ) =/= ( F ` Y ) )

Proof

Step Hyp Ref Expression
1 f1veqaeq
 |-  ( ( F : A -1-1-> B /\ ( X e. A /\ Y e. A ) ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) )
2 1 necon3d
 |-  ( ( F : A -1-1-> B /\ ( X e. A /\ Y e. A ) ) -> ( X =/= Y -> ( F ` X ) =/= ( F ` Y ) ) )
3 2 exp32
 |-  ( F : A -1-1-> B -> ( X e. A -> ( Y e. A -> ( X =/= Y -> ( F ` X ) =/= ( F ` Y ) ) ) ) )
4 3 3imp2
 |-  ( ( F : A -1-1-> B /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( F ` X ) =/= ( F ` Y ) )