Metamath Proof Explorer


Theorem dff14i

Description: A one-to-one function maps different arguments onto different values. Implication of the alternate definition dff14a . (Contributed by AV, 30-Oct-2025)

Ref Expression
Assertion dff14i ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ( 𝐹𝑋 ) ≠ ( 𝐹𝑌 ) )

Proof

Step Hyp Ref Expression
1 f1veqaeq ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( ( 𝐹𝑋 ) = ( 𝐹𝑌 ) → 𝑋 = 𝑌 ) )
2 1 necon3d ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴𝑌𝐴 ) ) → ( 𝑋𝑌 → ( 𝐹𝑋 ) ≠ ( 𝐹𝑌 ) ) )
3 2 exp32 ( 𝐹 : 𝐴1-1𝐵 → ( 𝑋𝐴 → ( 𝑌𝐴 → ( 𝑋𝑌 → ( 𝐹𝑋 ) ≠ ( 𝐹𝑌 ) ) ) ) )
4 3 3imp2 ( ( 𝐹 : 𝐴1-1𝐵 ∧ ( 𝑋𝐴𝑌𝐴𝑋𝑌 ) ) → ( 𝐹𝑋 ) ≠ ( 𝐹𝑌 ) )