| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐸 : 𝐷 –1-1→ 𝑅 ) |
| 2 |
|
f1f |
⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷 → 𝐹 : 𝐶 ⟶ 𝐷 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) → 𝐹 : 𝐶 ⟶ 𝐷 ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → 𝐹 : 𝐶 ⟶ 𝐷 ) |
| 5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → 𝐴 ∈ 𝐶 ) |
| 7 |
4 6
|
ffvelcdmd |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ) |
| 8 |
7
|
3adant3 |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ) |
| 9 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → 𝐵 ∈ 𝐶 ) |
| 11 |
4 10
|
ffvelcdmd |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) |
| 12 |
11
|
3adant3 |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) |
| 13 |
|
simpr |
⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) → 𝐹 : 𝐶 –1-1→ 𝐷 ) |
| 14 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) ) |
| 15 |
14
|
biimpri |
⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ) |
| 16 |
|
dff14i |
⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) |
| 17 |
13 15 16
|
syl3an132 |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) |
| 18 |
|
dff14i |
⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 19 |
1 8 12 17 18
|
syl13anc |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 20 |
|
simpl |
⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) |
| 22 |
20 21
|
neeq12d |
⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ 𝑋 ≠ 𝑌 ) ) |
| 23 |
19 22
|
syl5ibcom |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → 𝑋 ≠ 𝑌 ) ) |