Metamath Proof Explorer


Theorem 2f1fvneq

Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018)

Ref Expression
Assertion 2f1fvneq ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 f1veqaeq ( ( 𝐹 : 𝐶1-1𝐷 ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( ( 𝐹𝐴 ) = ( 𝐹𝐵 ) → 𝐴 = 𝐵 ) )
2 1 adantll ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( ( 𝐹𝐴 ) = ( 𝐹𝐵 ) → 𝐴 = 𝐵 ) )
3 2 necon3ad ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( 𝐴𝐵 → ¬ ( 𝐹𝐴 ) = ( 𝐹𝐵 ) ) )
4 3 3impia ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ¬ ( 𝐹𝐴 ) = ( 𝐹𝐵 ) )
5 simpll ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → 𝐸 : 𝐷1-1𝑅 )
6 f1f ( 𝐹 : 𝐶1-1𝐷𝐹 : 𝐶𝐷 )
7 ffvelrn ( ( 𝐹 : 𝐶𝐷𝐴𝐶 ) → ( 𝐹𝐴 ) ∈ 𝐷 )
8 ffvelrn ( ( 𝐹 : 𝐶𝐷𝐵𝐶 ) → ( 𝐹𝐵 ) ∈ 𝐷 )
9 7 8 anim12dan ( ( 𝐹 : 𝐶𝐷 ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( ( 𝐹𝐴 ) ∈ 𝐷 ∧ ( 𝐹𝐵 ) ∈ 𝐷 ) )
10 9 ex ( 𝐹 : 𝐶𝐷 → ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐹𝐴 ) ∈ 𝐷 ∧ ( 𝐹𝐵 ) ∈ 𝐷 ) ) )
11 6 10 syl ( 𝐹 : 𝐶1-1𝐷 → ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐹𝐴 ) ∈ 𝐷 ∧ ( 𝐹𝐵 ) ∈ 𝐷 ) ) )
12 11 adantl ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) → ( ( 𝐴𝐶𝐵𝐶 ) → ( ( 𝐹𝐴 ) ∈ 𝐷 ∧ ( 𝐹𝐵 ) ∈ 𝐷 ) ) )
13 12 imp ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( ( 𝐹𝐴 ) ∈ 𝐷 ∧ ( 𝐹𝐵 ) ∈ 𝐷 ) )
14 f1veqaeq ( ( 𝐸 : 𝐷1-1𝑅 ∧ ( ( 𝐹𝐴 ) ∈ 𝐷 ∧ ( 𝐹𝐵 ) ∈ 𝐷 ) ) → ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = ( 𝐸 ‘ ( 𝐹𝐵 ) ) → ( 𝐹𝐴 ) = ( 𝐹𝐵 ) ) )
15 5 13 14 syl2anc ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = ( 𝐸 ‘ ( 𝐹𝐵 ) ) → ( 𝐹𝐴 ) = ( 𝐹𝐵 ) ) )
16 15 con3dimp ( ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) ∧ ¬ ( 𝐹𝐴 ) = ( 𝐹𝐵 ) ) → ¬ ( 𝐸 ‘ ( 𝐹𝐴 ) ) = ( 𝐸 ‘ ( 𝐹𝐵 ) ) )
17 eqeq12 ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = ( 𝐸 ‘ ( 𝐹𝐵 ) ) ↔ 𝑋 = 𝑌 ) )
18 17 notbid ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → ( ¬ ( 𝐸 ‘ ( 𝐹𝐴 ) ) = ( 𝐸 ‘ ( 𝐹𝐵 ) ) ↔ ¬ 𝑋 = 𝑌 ) )
19 neqne ( ¬ 𝑋 = 𝑌𝑋𝑌 )
20 18 19 syl6bi ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → ( ¬ ( 𝐸 ‘ ( 𝐹𝐴 ) ) = ( 𝐸 ‘ ( 𝐹𝐵 ) ) → 𝑋𝑌 ) )
21 16 20 syl5com ( ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) ∧ ¬ ( 𝐹𝐴 ) = ( 𝐹𝐵 ) ) → ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → 𝑋𝑌 ) )
22 21 ex ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( ¬ ( 𝐹𝐴 ) = ( 𝐹𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → 𝑋𝑌 ) ) )
23 22 3adant3 ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( ¬ ( 𝐹𝐴 ) = ( 𝐹𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → 𝑋𝑌 ) ) )
24 4 23 mpd ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → 𝑋𝑌 ) )