Metamath Proof Explorer


Theorem 2f1fvneq

Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018) (Proof shortened by AV, 30-Oct-2025)

Ref Expression
Assertion 2f1fvneq ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 simp1l ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → 𝐸 : 𝐷1-1𝑅 )
2 f1f ( 𝐹 : 𝐶1-1𝐷𝐹 : 𝐶𝐷 )
3 2 adantl ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) → 𝐹 : 𝐶𝐷 )
4 3 adantr ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → 𝐹 : 𝐶𝐷 )
5 simpl ( ( 𝐴𝐶𝐵𝐶 ) → 𝐴𝐶 )
6 5 adantl ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → 𝐴𝐶 )
7 4 6 ffvelcdmd ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( 𝐹𝐴 ) ∈ 𝐷 )
8 7 3adant3 ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐹𝐴 ) ∈ 𝐷 )
9 simpr ( ( 𝐴𝐶𝐵𝐶 ) → 𝐵𝐶 )
10 9 adantl ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → 𝐵𝐶 )
11 4 10 ffvelcdmd ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ) → ( 𝐹𝐵 ) ∈ 𝐷 )
12 11 3adant3 ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐹𝐵 ) ∈ 𝐷 )
13 simpr ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) → 𝐹 : 𝐶1-1𝐷 )
14 df-3an ( ( 𝐴𝐶𝐵𝐶𝐴𝐵 ) ↔ ( ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) )
15 14 biimpri ( ( ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐴𝐶𝐵𝐶𝐴𝐵 ) )
16 dff14i ( ( 𝐹 : 𝐶1-1𝐷 ∧ ( 𝐴𝐶𝐵𝐶𝐴𝐵 ) ) → ( 𝐹𝐴 ) ≠ ( 𝐹𝐵 ) )
17 13 15 16 syl3an132 ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐹𝐴 ) ≠ ( 𝐹𝐵 ) )
18 dff14i ( ( 𝐸 : 𝐷1-1𝑅 ∧ ( ( 𝐹𝐴 ) ∈ 𝐷 ∧ ( 𝐹𝐵 ) ∈ 𝐷 ∧ ( 𝐹𝐴 ) ≠ ( 𝐹𝐵 ) ) ) → ( 𝐸 ‘ ( 𝐹𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹𝐵 ) ) )
19 1 8 12 17 18 syl13anc ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐸 ‘ ( 𝐹𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹𝐵 ) ) )
20 simpl ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 )
21 simpr ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 )
22 20 21 neeq12d ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹𝐵 ) ) ↔ 𝑋𝑌 ) )
23 19 22 syl5ibcom ( ( ( 𝐸 : 𝐷1-1𝑅𝐹 : 𝐶1-1𝐷 ) ∧ ( 𝐴𝐶𝐵𝐶 ) ∧ 𝐴𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹𝐵 ) ) = 𝑌 ) → 𝑋𝑌 ) )