Metamath Proof Explorer


Theorem syl3an132

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016)

Ref Expression
Hypotheses syl3an132.1 ( 𝜑𝜓 )
syl3an132.2 ( ( 𝜒𝜃 ) → 𝜏 )
syl3an132.3 ( ( 𝜓𝜏 ) → 𝜂 )
Assertion syl3an132 ( ( 𝜑𝜒𝜃 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl3an132.1 ( 𝜑𝜓 )
2 syl3an132.2 ( ( 𝜒𝜃 ) → 𝜏 )
3 syl3an132.3 ( ( 𝜓𝜏 ) → 𝜂 )
4 1 2 3 syl2an ( ( 𝜑 ∧ ( 𝜒𝜃 ) ) → 𝜂 )
5 4 3impb ( ( 𝜑𝜒𝜃 ) → 𝜂 )