Metamath Proof Explorer


Theorem syl3an132

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016)

Ref Expression
Hypotheses syl3an132.1
|- ( ph -> ps )
syl3an132.2
|- ( ( ch /\ th ) -> ta )
syl3an132.3
|- ( ( ps /\ ta ) -> et )
Assertion syl3an132
|- ( ( ph /\ ch /\ th ) -> et )

Proof

Step Hyp Ref Expression
1 syl3an132.1
 |-  ( ph -> ps )
2 syl3an132.2
 |-  ( ( ch /\ th ) -> ta )
3 syl3an132.3
 |-  ( ( ps /\ ta ) -> et )
4 1 2 3 syl2an
 |-  ( ( ph /\ ( ch /\ th ) ) -> et )
5 4 3impb
 |-  ( ( ph /\ ch /\ th ) -> et )