Step |
Hyp |
Ref |
Expression |
1 |
|
f1mpt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
2 |
|
f1mpt.2 |
⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) |
3 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
4 |
1 3
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐹 |
6 |
4 5
|
dff13f |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
7 |
1
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
7
|
anbi1i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
9 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ∈ 𝐵 ↔ 𝐷 ∈ 𝐵 ) ) |
10 |
9
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝐷 ∈ 𝐵 ) |
11 |
|
raaanv |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 𝐷 ∈ 𝐵 ) ) |
12 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
13 |
2 1
|
fvmptg |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = 𝐷 ) |
14 |
12 13
|
eqeqan12d |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝐶 = 𝐷 ) ) |
15 |
14
|
an4s |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝐶 = 𝐷 ) ) |
16 |
15
|
imbi1d |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
17 |
16
|
ex |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) ) |
18 |
17
|
ralimdva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) ) |
19 |
|
ralbi |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
20 |
18 19
|
syl6 |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) ) |
21 |
20
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
22 |
|
ralbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
23 |
21 22
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
24 |
11 23
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 𝐷 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
25 |
10 24
|
sylan2b |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
26 |
25
|
anidms |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
27 |
26
|
pm5.32i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
28 |
6 8 27
|
3bitr2i |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |