Metamath Proof Explorer


Theorem dffo2

Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006)

Ref Expression
Assertion dffo2
|- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) )

Proof

Step Hyp Ref Expression
1 fof
 |-  ( F : A -onto-> B -> F : A --> B )
2 forn
 |-  ( F : A -onto-> B -> ran F = B )
3 1 2 jca
 |-  ( F : A -onto-> B -> ( F : A --> B /\ ran F = B ) )
4 ffn
 |-  ( F : A --> B -> F Fn A )
5 df-fo
 |-  ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) )
6 5 biimpri
 |-  ( ( F Fn A /\ ran F = B ) -> F : A -onto-> B )
7 4 6 sylan
 |-  ( ( F : A --> B /\ ran F = B ) -> F : A -onto-> B )
8 3 7 impbii
 |-  ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) )