| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ima |  |-  ( A " B ) = ran ( A |` B ) | 
						
							| 2 |  | dfrn2 |  |-  ran ( A |` B ) = { y | E. x x ( A |` B ) y } | 
						
							| 3 |  | brres |  |-  ( y e. _V -> ( x ( A |` B ) y <-> ( x e. B /\ x A y ) ) ) | 
						
							| 4 | 3 | elv |  |-  ( x ( A |` B ) y <-> ( x e. B /\ x A y ) ) | 
						
							| 5 | 4 | exbii |  |-  ( E. x x ( A |` B ) y <-> E. x ( x e. B /\ x A y ) ) | 
						
							| 6 |  | df-rex |  |-  ( E. x e. B x A y <-> E. x ( x e. B /\ x A y ) ) | 
						
							| 7 | 5 6 | bitr4i |  |-  ( E. x x ( A |` B ) y <-> E. x e. B x A y ) | 
						
							| 8 | 7 | abbii |  |-  { y | E. x x ( A |` B ) y } = { y | E. x e. B x A y } | 
						
							| 9 | 1 2 8 | 3eqtri |  |-  ( A " B ) = { y | E. x e. B x A y } |