Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ2 |
|- ( x = y -> ( [ y / x ] ph -> ph ) ) |
2 |
1
|
com12 |
|- ( [ y / x ] ph -> ( x = y -> ph ) ) |
3 |
|
sb1 |
|- ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) |
4 |
2 3
|
jca |
|- ( [ y / x ] ph -> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) ) |
5 |
|
id |
|- ( x = y -> x = y ) |
6 |
|
sbequ1 |
|- ( x = y -> ( ph -> [ y / x ] ph ) ) |
7 |
5 6
|
embantd |
|- ( x = y -> ( ( x = y -> ph ) -> [ y / x ] ph ) ) |
8 |
7
|
sps |
|- ( A. x x = y -> ( ( x = y -> ph ) -> [ y / x ] ph ) ) |
9 |
8
|
adantrd |
|- ( A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> [ y / x ] ph ) ) |
10 |
|
sb3 |
|- ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> [ y / x ] ph ) ) |
11 |
10
|
adantld |
|- ( -. A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> [ y / x ] ph ) ) |
12 |
9 11
|
pm2.61i |
|- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> [ y / x ] ph ) |
13 |
4 12
|
impbii |
|- ( [ y / x ] ph <-> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) ) |