| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihglbc.b |
|- B = ( Base ` K ) |
| 2 |
|
dihglbc.g |
|- G = ( glb ` K ) |
| 3 |
|
dihglbc.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dihglbc.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 5 |
|
dihglbc.l |
|- .<_ = ( le ` K ) |
| 6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 7 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 8 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 9 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
| 10 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 11 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 12 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 13 |
|
eqid |
|- ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = q ) |
| 14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dihglbcpreN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) /\ -. ( G ` S ) .<_ W ) -> ( I ` ( G ` S ) ) = |^|_ x e. S ( I ` x ) ) |