Metamath Proof Explorer


Theorem dihglbcN

Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane W . (Contributed by NM, 26-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglbc.b B = Base K
dihglbc.g G = glb K
dihglbc.h H = LHyp K
dihglbc.i I = DIsoH K W
dihglbc.l ˙ = K
Assertion dihglbcN K HL W H S B S ¬ G S ˙ W I G S = x S I x

Proof

Step Hyp Ref Expression
1 dihglbc.b B = Base K
2 dihglbc.g G = glb K
3 dihglbc.h H = LHyp K
4 dihglbc.i I = DIsoH K W
5 dihglbc.l ˙ = K
6 eqid join K = join K
7 eqid meet K = meet K
8 eqid Atoms K = Atoms K
9 eqid oc K W = oc K W
10 eqid LTrn K W = LTrn K W
11 eqid trL K W = trL K W
12 eqid TEndo K W = TEndo K W
13 eqid ι g LTrn K W | g oc K W = q = ι g LTrn K W | g oc K W = q
14 1 2 3 4 5 6 7 8 9 10 11 12 13 dihglbcpreN K HL W H S B S ¬ G S ˙ W I G S = x S I x