Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetlem4.b |
|- B = ( Base ` K ) |
2 |
|
dihmeetlem4.l |
|- .<_ = ( le ` K ) |
3 |
|
dihmeetlem4.m |
|- ./\ = ( meet ` K ) |
4 |
|
dihmeetlem4.a |
|- A = ( Atoms ` K ) |
5 |
|
dihmeetlem4.h |
|- H = ( LHyp ` K ) |
6 |
|
dihmeetlem4.i |
|- I = ( ( DIsoH ` K ) ` W ) |
7 |
|
dihmeetlem4.u |
|- U = ( ( DVecH ` K ) ` W ) |
8 |
|
dihmeetlem4.z |
|- .0. = ( 0g ` U ) |
9 |
|
eqid |
|- ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) |
10 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
11 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
12 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
13 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
14 |
|
eqid |
|- ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dihmeetlem4preN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) = { .0. } ) |