Metamath Proof Explorer


Theorem dihmeetlem4preN

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem4.b
|- B = ( Base ` K )
dihmeetlem4.l
|- .<_ = ( le ` K )
dihmeetlem4.m
|- ./\ = ( meet ` K )
dihmeetlem4.a
|- A = ( Atoms ` K )
dihmeetlem4.h
|- H = ( LHyp ` K )
dihmeetlem4.i
|- I = ( ( DIsoH ` K ) ` W )
dihmeetlem4.u
|- U = ( ( DVecH ` K ) ` W )
dihmeetlem4.z
|- .0. = ( 0g ` U )
dihmeetlem4.g
|- G = ( iota_ g e. T ( g ` P ) = Q )
dihmeetlem4.p
|- P = ( ( oc ` K ) ` W )
dihmeetlem4.t
|- T = ( ( LTrn ` K ) ` W )
dihmeetlem4.r
|- R = ( ( trL ` K ) ` W )
dihmeetlem4.e
|- E = ( ( TEndo ` K ) ` W )
dihmeetlem4.o
|- O = ( h e. T |-> ( _I |` B ) )
Assertion dihmeetlem4preN
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) = { .0. } )

Proof

Step Hyp Ref Expression
1 dihmeetlem4.b
 |-  B = ( Base ` K )
2 dihmeetlem4.l
 |-  .<_ = ( le ` K )
3 dihmeetlem4.m
 |-  ./\ = ( meet ` K )
4 dihmeetlem4.a
 |-  A = ( Atoms ` K )
5 dihmeetlem4.h
 |-  H = ( LHyp ` K )
6 dihmeetlem4.i
 |-  I = ( ( DIsoH ` K ) ` W )
7 dihmeetlem4.u
 |-  U = ( ( DVecH ` K ) ` W )
8 dihmeetlem4.z
 |-  .0. = ( 0g ` U )
9 dihmeetlem4.g
 |-  G = ( iota_ g e. T ( g ` P ) = Q )
10 dihmeetlem4.p
 |-  P = ( ( oc ` K ) ` W )
11 dihmeetlem4.t
 |-  T = ( ( LTrn ` K ) ` W )
12 dihmeetlem4.r
 |-  R = ( ( trL ` K ) ` W )
13 dihmeetlem4.e
 |-  E = ( ( TEndo ` K ) ` W )
14 dihmeetlem4.o
 |-  O = ( h e. T |-> ( _I |` B ) )
15 5 6 dihvalrel
 |-  ( ( K e. HL /\ W e. H ) -> Rel ( I ` Q ) )
16 relin1
 |-  ( Rel ( I ` Q ) -> Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) )
17 15 16 syl
 |-  ( ( K e. HL /\ W e. H ) -> Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) )
18 17 3ad2ant1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) )
19 5 6 dihvalrel
 |-  ( ( K e. HL /\ W e. H ) -> Rel ( I ` ( 0. ` K ) ) )
20 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
21 20 5 6 7 8 dih0
 |-  ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) = { .0. } )
22 21 releqd
 |-  ( ( K e. HL /\ W e. H ) -> ( Rel ( I ` ( 0. ` K ) ) <-> Rel { .0. } ) )
23 19 22 mpbid
 |-  ( ( K e. HL /\ W e. H ) -> Rel { .0. } )
24 23 3ad2ant1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> Rel { .0. } )
25 id
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
26 elin
 |-  ( <. f , s >. e. ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) <-> ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) )
27 vex
 |-  f e. _V
28 vex
 |-  s e. _V
29 2 4 5 10 11 13 6 9 27 28 dihopelvalcqat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( I ` Q ) <-> ( f = ( s ` G ) /\ s e. E ) ) )
30 29 3adant2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( I ` Q ) <-> ( f = ( s ` G ) /\ s e. E ) ) )
31 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) )
32 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> K e. HL )
33 32 hllatd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> K e. Lat )
34 simp2l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> X e. B )
35 simp1r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> W e. H )
36 1 5 lhpbase
 |-  ( W e. H -> W e. B )
37 35 36 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> W e. B )
38 1 3 latmcl
 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B )
39 33 34 37 38 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( X ./\ W ) e. B )
40 1 2 3 latmle2
 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W )
41 33 34 37 40 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( X ./\ W ) .<_ W )
42 1 2 5 11 12 14 6 dihopelvalbN
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( <. f , s >. e. ( I ` ( X ./\ W ) ) <-> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) )
43 31 39 41 42 syl12anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( I ` ( X ./\ W ) ) <-> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) )
44 30 43 anbi12d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) )
45 simprll
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> f = ( s ` G ) )
46 simprrr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> s = O )
47 46 fveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( s ` G ) = ( O ` G ) )
48 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( K e. HL /\ W e. H ) )
49 2 4 5 10 lhpocnel2
 |-  ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) )
50 48 49 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( P e. A /\ -. P .<_ W ) )
51 simpl3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
52 2 4 5 11 9 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> G e. T )
53 48 50 51 52 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> G e. T )
54 14 1 tendo02
 |-  ( G e. T -> ( O ` G ) = ( _I |` B ) )
55 53 54 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( O ` G ) = ( _I |` B ) )
56 45 47 55 3eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> f = ( _I |` B ) )
57 56 46 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( f = ( _I |` B ) /\ s = O ) )
58 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( K e. HL /\ W e. H ) )
59 58 49 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( P e. A /\ -. P .<_ W ) )
60 simpl3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( Q e. A /\ -. Q .<_ W ) )
61 58 59 60 52 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> G e. T )
62 61 54 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( O ` G ) = ( _I |` B ) )
63 simprr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> s = O )
64 63 fveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( s ` G ) = ( O ` G ) )
65 simprl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> f = ( _I |` B ) )
66 62 64 65 3eqtr4rd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> f = ( s ` G ) )
67 1 5 11 13 14 tendo0cl
 |-  ( ( K e. HL /\ W e. H ) -> O e. E )
68 58 67 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> O e. E )
69 63 68 eqeltrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> s e. E )
70 1 5 11 idltrn
 |-  ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T )
71 58 70 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( _I |` B ) e. T )
72 65 71 eqeltrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> f e. T )
73 65 fveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` f ) = ( R ` ( _I |` B ) ) )
74 1 20 5 12 trlid0
 |-  ( ( K e. HL /\ W e. H ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) )
75 58 74 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) )
76 73 75 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` f ) = ( 0. ` K ) )
77 simpl1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> K e. HL )
78 hlatl
 |-  ( K e. HL -> K e. AtLat )
79 77 78 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> K e. AtLat )
80 39 adantr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( X ./\ W ) e. B )
81 1 2 20 atl0le
 |-  ( ( K e. AtLat /\ ( X ./\ W ) e. B ) -> ( 0. ` K ) .<_ ( X ./\ W ) )
82 79 80 81 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( 0. ` K ) .<_ ( X ./\ W ) )
83 76 82 eqbrtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` f ) .<_ ( X ./\ W ) )
84 72 83 63 jca31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) )
85 66 69 84 jca31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) )
86 57 85 impbida
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) <-> ( f = ( _I |` B ) /\ s = O ) ) )
87 44 86 bitrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> ( f = ( _I |` B ) /\ s = O ) ) )
88 opex
 |-  <. f , s >. e. _V
89 88 elsn
 |-  ( <. f , s >. e. { <. ( _I |` B ) , O >. } <-> <. f , s >. = <. ( _I |` B ) , O >. )
90 27 28 opth
 |-  ( <. f , s >. = <. ( _I |` B ) , O >. <-> ( f = ( _I |` B ) /\ s = O ) )
91 89 90 bitr2i
 |-  ( ( f = ( _I |` B ) /\ s = O ) <-> <. f , s >. e. { <. ( _I |` B ) , O >. } )
92 87 91 bitrdi
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> <. f , s >. e. { <. ( _I |` B ) , O >. } ) )
93 1 5 11 7 8 14 dvh0g
 |-  ( ( K e. HL /\ W e. H ) -> .0. = <. ( _I |` B ) , O >. )
94 93 3ad2ant1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> .0. = <. ( _I |` B ) , O >. )
95 94 sneqd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> { .0. } = { <. ( _I |` B ) , O >. } )
96 95 eleq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. { .0. } <-> <. f , s >. e. { <. ( _I |` B ) , O >. } ) )
97 92 96 bitr4d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> <. f , s >. e. { .0. } ) )
98 26 97 syl5bb
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) <-> <. f , s >. e. { .0. } ) )
99 98 eqrelrdv2
 |-  ( ( ( Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) /\ Rel { .0. } ) /\ ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) = { .0. } )
100 18 24 25 99 syl21anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) = { .0. } )