| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem4.b |
|- B = ( Base ` K ) |
| 2 |
|
dihmeetlem4.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dihmeetlem4.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
dihmeetlem4.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dihmeetlem4.h |
|- H = ( LHyp ` K ) |
| 6 |
|
dihmeetlem4.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
dihmeetlem4.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 8 |
|
dihmeetlem4.z |
|- .0. = ( 0g ` U ) |
| 9 |
|
dihmeetlem4.g |
|- G = ( iota_ g e. T ( g ` P ) = Q ) |
| 10 |
|
dihmeetlem4.p |
|- P = ( ( oc ` K ) ` W ) |
| 11 |
|
dihmeetlem4.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 12 |
|
dihmeetlem4.r |
|- R = ( ( trL ` K ) ` W ) |
| 13 |
|
dihmeetlem4.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 14 |
|
dihmeetlem4.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
| 15 |
5 6
|
dihvalrel |
|- ( ( K e. HL /\ W e. H ) -> Rel ( I ` Q ) ) |
| 16 |
|
relin1 |
|- ( Rel ( I ` Q ) -> Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) ) |
| 17 |
15 16
|
syl |
|- ( ( K e. HL /\ W e. H ) -> Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) ) |
| 18 |
17
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) ) |
| 19 |
5 6
|
dihvalrel |
|- ( ( K e. HL /\ W e. H ) -> Rel ( I ` ( 0. ` K ) ) ) |
| 20 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 21 |
20 5 6 7 8
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) = { .0. } ) |
| 22 |
21
|
releqd |
|- ( ( K e. HL /\ W e. H ) -> ( Rel ( I ` ( 0. ` K ) ) <-> Rel { .0. } ) ) |
| 23 |
19 22
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> Rel { .0. } ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> Rel { .0. } ) |
| 25 |
|
id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
| 26 |
|
elin |
|- ( <. f , s >. e. ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) <-> ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) ) |
| 27 |
|
vex |
|- f e. _V |
| 28 |
|
vex |
|- s e. _V |
| 29 |
2 4 5 10 11 13 6 9 27 28
|
dihopelvalcqat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( I ` Q ) <-> ( f = ( s ` G ) /\ s e. E ) ) ) |
| 30 |
29
|
3adant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( I ` Q ) <-> ( f = ( s ` G ) /\ s e. E ) ) ) |
| 31 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 32 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> K e. HL ) |
| 33 |
32
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> K e. Lat ) |
| 34 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> X e. B ) |
| 35 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> W e. H ) |
| 36 |
1 5
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 37 |
35 36
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> W e. B ) |
| 38 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
| 39 |
33 34 37 38
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( X ./\ W ) e. B ) |
| 40 |
1 2 3
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W ) |
| 41 |
33 34 37 40
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( X ./\ W ) .<_ W ) |
| 42 |
1 2 5 11 12 14 6
|
dihopelvalbN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( <. f , s >. e. ( I ` ( X ./\ W ) ) <-> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) |
| 43 |
31 39 41 42
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( I ` ( X ./\ W ) ) <-> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) |
| 44 |
30 43
|
anbi12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) ) |
| 45 |
|
simprll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> f = ( s ` G ) ) |
| 46 |
|
simprrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> s = O ) |
| 47 |
46
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( s ` G ) = ( O ` G ) ) |
| 48 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 49 |
2 4 5 10
|
lhpocnel2 |
|- ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) ) |
| 50 |
48 49
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 51 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 52 |
2 4 5 11 9
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> G e. T ) |
| 53 |
48 50 51 52
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> G e. T ) |
| 54 |
14 1
|
tendo02 |
|- ( G e. T -> ( O ` G ) = ( _I |` B ) ) |
| 55 |
53 54
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( O ` G ) = ( _I |` B ) ) |
| 56 |
45 47 55
|
3eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> f = ( _I |` B ) ) |
| 57 |
56 46
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) -> ( f = ( _I |` B ) /\ s = O ) ) |
| 58 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( K e. HL /\ W e. H ) ) |
| 59 |
58 49
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 60 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 61 |
58 59 60 52
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> G e. T ) |
| 62 |
61 54
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( O ` G ) = ( _I |` B ) ) |
| 63 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> s = O ) |
| 64 |
63
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( s ` G ) = ( O ` G ) ) |
| 65 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> f = ( _I |` B ) ) |
| 66 |
62 64 65
|
3eqtr4rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> f = ( s ` G ) ) |
| 67 |
1 5 11 13 14
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> O e. E ) |
| 68 |
58 67
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> O e. E ) |
| 69 |
63 68
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> s e. E ) |
| 70 |
1 5 11
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
| 71 |
58 70
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( _I |` B ) e. T ) |
| 72 |
65 71
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> f e. T ) |
| 73 |
65
|
fveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` f ) = ( R ` ( _I |` B ) ) ) |
| 74 |
1 20 5 12
|
trlid0 |
|- ( ( K e. HL /\ W e. H ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) ) |
| 75 |
58 74
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` ( _I |` B ) ) = ( 0. ` K ) ) |
| 76 |
73 75
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` f ) = ( 0. ` K ) ) |
| 77 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> K e. HL ) |
| 78 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 79 |
77 78
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> K e. AtLat ) |
| 80 |
39
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( X ./\ W ) e. B ) |
| 81 |
1 2 20
|
atl0le |
|- ( ( K e. AtLat /\ ( X ./\ W ) e. B ) -> ( 0. ` K ) .<_ ( X ./\ W ) ) |
| 82 |
79 80 81
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( 0. ` K ) .<_ ( X ./\ W ) ) |
| 83 |
76 82
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( R ` f ) .<_ ( X ./\ W ) ) |
| 84 |
72 83 63
|
jca31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) |
| 85 |
66 69 84
|
jca31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( _I |` B ) /\ s = O ) ) -> ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) ) |
| 86 |
57 85
|
impbida |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( f = ( s ` G ) /\ s e. E ) /\ ( ( f e. T /\ ( R ` f ) .<_ ( X ./\ W ) ) /\ s = O ) ) <-> ( f = ( _I |` B ) /\ s = O ) ) ) |
| 87 |
44 86
|
bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> ( f = ( _I |` B ) /\ s = O ) ) ) |
| 88 |
|
opex |
|- <. f , s >. e. _V |
| 89 |
88
|
elsn |
|- ( <. f , s >. e. { <. ( _I |` B ) , O >. } <-> <. f , s >. = <. ( _I |` B ) , O >. ) |
| 90 |
27 28
|
opth |
|- ( <. f , s >. = <. ( _I |` B ) , O >. <-> ( f = ( _I |` B ) /\ s = O ) ) |
| 91 |
89 90
|
bitr2i |
|- ( ( f = ( _I |` B ) /\ s = O ) <-> <. f , s >. e. { <. ( _I |` B ) , O >. } ) |
| 92 |
87 91
|
bitrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> <. f , s >. e. { <. ( _I |` B ) , O >. } ) ) |
| 93 |
1 5 11 7 8 14
|
dvh0g |
|- ( ( K e. HL /\ W e. H ) -> .0. = <. ( _I |` B ) , O >. ) |
| 94 |
93
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> .0. = <. ( _I |` B ) , O >. ) |
| 95 |
94
|
sneqd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> { .0. } = { <. ( _I |` B ) , O >. } ) |
| 96 |
95
|
eleq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. { .0. } <-> <. f , s >. e. { <. ( _I |` B ) , O >. } ) ) |
| 97 |
92 96
|
bitr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( <. f , s >. e. ( I ` Q ) /\ <. f , s >. e. ( I ` ( X ./\ W ) ) ) <-> <. f , s >. e. { .0. } ) ) |
| 98 |
26 97
|
bitrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. f , s >. e. ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) <-> <. f , s >. e. { .0. } ) ) |
| 99 |
98
|
eqrelrdv2 |
|- ( ( ( Rel ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) /\ Rel { .0. } ) /\ ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) = { .0. } ) |
| 100 |
18 24 25 99
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( I ` Q ) i^i ( I ` ( X ./\ W ) ) ) = { .0. } ) |