| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihmeetlem4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihmeetlem4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
dihmeetlem4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dihmeetlem4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
dihmeetlem4.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dihmeetlem4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dihmeetlem4.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 9 |
|
dihmeetlem4.g |
⊢ 𝐺 = ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) |
| 10 |
|
dihmeetlem4.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
dihmeetlem4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 12 |
|
dihmeetlem4.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
|
dihmeetlem4.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
dihmeetlem4.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 15 |
5 6
|
dihvalrel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( 𝐼 ‘ 𝑄 ) ) |
| 16 |
|
relin1 |
⊢ ( Rel ( 𝐼 ‘ 𝑄 ) → Rel ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 18 |
17
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → Rel ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 19 |
5 6
|
dihvalrel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ) |
| 20 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 21 |
20 5 6 7 8
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
| 22 |
21
|
releqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Rel ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ Rel { 0 } ) ) |
| 23 |
19 22
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel { 0 } ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → Rel { 0 } ) |
| 25 |
|
id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
| 26 |
|
elin |
⊢ ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ↔ ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
| 27 |
|
vex |
⊢ 𝑓 ∈ V |
| 28 |
|
vex |
⊢ 𝑠 ∈ V |
| 29 |
2 4 5 10 11 13 6 9 27 28
|
dihopelvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
| 30 |
29
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ) ) |
| 31 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 32 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 33 |
32
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 34 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
| 35 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
| 36 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐵 ) |
| 38 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 39 |
33 34 37 38
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 40 |
1 2 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
| 41 |
33 34 37 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
| 42 |
1 2 5 11 12 14 6
|
dihopelvalbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) |
| 43 |
31 39 41 42
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) |
| 44 |
30 43
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ↔ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) ) |
| 45 |
|
simprll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → 𝑓 = ( 𝑠 ‘ 𝐺 ) ) |
| 46 |
|
simprrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → 𝑠 = 𝑂 ) |
| 47 |
46
|
fveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → ( 𝑠 ‘ 𝐺 ) = ( 𝑂 ‘ 𝐺 ) ) |
| 48 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 49 |
2 4 5 10
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 51 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 52 |
2 4 5 11 9
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
| 53 |
48 50 51 52
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → 𝐺 ∈ 𝑇 ) |
| 54 |
14 1
|
tendo02 |
⊢ ( 𝐺 ∈ 𝑇 → ( 𝑂 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → ( 𝑂 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 56 |
45 47 55
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → 𝑓 = ( I ↾ 𝐵 ) ) |
| 57 |
56 46
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) → ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) |
| 58 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 59 |
58 49
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 60 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 61 |
58 59 60 52
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝐺 ∈ 𝑇 ) |
| 62 |
61 54
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑂 ‘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 63 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝑠 = 𝑂 ) |
| 64 |
63
|
fveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑠 ‘ 𝐺 ) = ( 𝑂 ‘ 𝐺 ) ) |
| 65 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝑓 = ( I ↾ 𝐵 ) ) |
| 66 |
62 64 65
|
3eqtr4rd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝑓 = ( 𝑠 ‘ 𝐺 ) ) |
| 67 |
1 5 11 13 14
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |
| 68 |
58 67
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝑂 ∈ 𝐸 ) |
| 69 |
63 68
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝑠 ∈ 𝐸 ) |
| 70 |
1 5 11
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
| 71 |
58 70
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
| 72 |
65 71
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝑓 ∈ 𝑇 ) |
| 73 |
65
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑅 ‘ 𝑓 ) = ( 𝑅 ‘ ( I ↾ 𝐵 ) ) ) |
| 74 |
1 20 5 12
|
trlid0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) ) |
| 75 |
58 74
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑅 ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) ) |
| 76 |
73 75
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑅 ‘ 𝑓 ) = ( 0. ‘ 𝐾 ) ) |
| 77 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝐾 ∈ HL ) |
| 78 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 79 |
77 78
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → 𝐾 ∈ AtLat ) |
| 80 |
39
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
| 81 |
1 2 20
|
atl0le |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑋 ∧ 𝑊 ) ) |
| 82 |
79 80 81
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑋 ∧ 𝑊 ) ) |
| 83 |
76 82
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) |
| 84 |
72 83 63
|
jca31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) |
| 85 |
66 69 84
|
jca31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) → ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ) |
| 86 |
57 85
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( 𝑓 = ( 𝑠 ‘ 𝐺 ) ∧ 𝑠 ∈ 𝐸 ) ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑋 ∧ 𝑊 ) ) ∧ 𝑠 = 𝑂 ) ) ↔ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) ) |
| 87 |
44 86
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ↔ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) ) |
| 88 |
|
opex |
⊢ 〈 𝑓 , 𝑠 〉 ∈ V |
| 89 |
88
|
elsn |
⊢ ( 〈 𝑓 , 𝑠 〉 ∈ { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ↔ 〈 𝑓 , 𝑠 〉 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
| 90 |
27 28
|
opth |
⊢ ( 〈 𝑓 , 𝑠 〉 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ↔ ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ) |
| 91 |
89 90
|
bitr2i |
⊢ ( ( 𝑓 = ( I ↾ 𝐵 ) ∧ 𝑠 = 𝑂 ) ↔ 〈 𝑓 , 𝑠 〉 ∈ { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ) |
| 92 |
87 91
|
bitrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ↔ 〈 𝑓 , 𝑠 〉 ∈ { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ) ) |
| 93 |
1 5 11 7 8 14
|
dvh0g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
| 94 |
93
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 0 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
| 95 |
94
|
sneqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → { 0 } = { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ) |
| 96 |
95
|
eleq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ { 0 } ↔ 〈 𝑓 , 𝑠 〉 ∈ { 〈 ( I ↾ 𝐵 ) , 𝑂 〉 } ) ) |
| 97 |
92 96
|
bitr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ∧ 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ↔ 〈 𝑓 , 𝑠 〉 ∈ { 0 } ) ) |
| 98 |
26 97
|
bitrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ↔ 〈 𝑓 , 𝑠 〉 ∈ { 0 } ) ) |
| 99 |
98
|
eqrelrdv2 |
⊢ ( ( ( Rel ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ∧ Rel { 0 } ) ∧ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = { 0 } ) |
| 100 |
18 24 25 99
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑄 ) ∩ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = { 0 } ) |