Metamath Proof Explorer


Theorem dihmeetlem4preN

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem4.b B=BaseK
dihmeetlem4.l ˙=K
dihmeetlem4.m ˙=meetK
dihmeetlem4.a A=AtomsK
dihmeetlem4.h H=LHypK
dihmeetlem4.i I=DIsoHKW
dihmeetlem4.u U=DVecHKW
dihmeetlem4.z 0˙=0U
dihmeetlem4.g G=ιgT|gP=Q
dihmeetlem4.p P=ocKW
dihmeetlem4.t T=LTrnKW
dihmeetlem4.r R=trLKW
dihmeetlem4.e E=TEndoKW
dihmeetlem4.o O=hTIB
Assertion dihmeetlem4preN KHLWHXB¬X˙WQA¬Q˙WIQIX˙W=0˙

Proof

Step Hyp Ref Expression
1 dihmeetlem4.b B=BaseK
2 dihmeetlem4.l ˙=K
3 dihmeetlem4.m ˙=meetK
4 dihmeetlem4.a A=AtomsK
5 dihmeetlem4.h H=LHypK
6 dihmeetlem4.i I=DIsoHKW
7 dihmeetlem4.u U=DVecHKW
8 dihmeetlem4.z 0˙=0U
9 dihmeetlem4.g G=ιgT|gP=Q
10 dihmeetlem4.p P=ocKW
11 dihmeetlem4.t T=LTrnKW
12 dihmeetlem4.r R=trLKW
13 dihmeetlem4.e E=TEndoKW
14 dihmeetlem4.o O=hTIB
15 5 6 dihvalrel KHLWHRelIQ
16 relin1 RelIQRelIQIX˙W
17 15 16 syl KHLWHRelIQIX˙W
18 17 3ad2ant1 KHLWHXB¬X˙WQA¬Q˙WRelIQIX˙W
19 5 6 dihvalrel KHLWHRelI0.K
20 eqid 0.K=0.K
21 20 5 6 7 8 dih0 KHLWHI0.K=0˙
22 21 releqd KHLWHRelI0.KRel0˙
23 19 22 mpbid KHLWHRel0˙
24 23 3ad2ant1 KHLWHXB¬X˙WQA¬Q˙WRel0˙
25 id KHLWHXB¬X˙WQA¬Q˙WKHLWHXB¬X˙WQA¬Q˙W
26 elin fsIQIX˙WfsIQfsIX˙W
27 vex fV
28 vex sV
29 2 4 5 10 11 13 6 9 27 28 dihopelvalcqat KHLWHQA¬Q˙WfsIQf=sGsE
30 29 3adant2 KHLWHXB¬X˙WQA¬Q˙WfsIQf=sGsE
31 simp1 KHLWHXB¬X˙WQA¬Q˙WKHLWH
32 simp1l KHLWHXB¬X˙WQA¬Q˙WKHL
33 32 hllatd KHLWHXB¬X˙WQA¬Q˙WKLat
34 simp2l KHLWHXB¬X˙WQA¬Q˙WXB
35 simp1r KHLWHXB¬X˙WQA¬Q˙WWH
36 1 5 lhpbase WHWB
37 35 36 syl KHLWHXB¬X˙WQA¬Q˙WWB
38 1 3 latmcl KLatXBWBX˙WB
39 33 34 37 38 syl3anc KHLWHXB¬X˙WQA¬Q˙WX˙WB
40 1 2 3 latmle2 KLatXBWBX˙W˙W
41 33 34 37 40 syl3anc KHLWHXB¬X˙WQA¬Q˙WX˙W˙W
42 1 2 5 11 12 14 6 dihopelvalbN KHLWHX˙WBX˙W˙WfsIX˙WfTRf˙X˙Ws=O
43 31 39 41 42 syl12anc KHLWHXB¬X˙WQA¬Q˙WfsIX˙WfTRf˙X˙Ws=O
44 30 43 anbi12d KHLWHXB¬X˙WQA¬Q˙WfsIQfsIX˙Wf=sGsEfTRf˙X˙Ws=O
45 simprll KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=Of=sG
46 simprrr KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=Os=O
47 46 fveq1d KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=OsG=OG
48 simpl1 KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=OKHLWH
49 2 4 5 10 lhpocnel2 KHLWHPA¬P˙W
50 48 49 syl KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=OPA¬P˙W
51 simpl3 KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=OQA¬Q˙W
52 2 4 5 11 9 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WGT
53 48 50 51 52 syl3anc KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=OGT
54 14 1 tendo02 GTOG=IB
55 53 54 syl KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=OOG=IB
56 45 47 55 3eqtrd KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=Of=IB
57 56 46 jca KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=Of=IBs=O
58 simpl1 KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OKHLWH
59 58 49 syl KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OPA¬P˙W
60 simpl3 KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OQA¬Q˙W
61 58 59 60 52 syl3anc KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OGT
62 61 54 syl KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OOG=IB
63 simprr KHLWHXB¬X˙WQA¬Q˙Wf=IBs=Os=O
64 63 fveq1d KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OsG=OG
65 simprl KHLWHXB¬X˙WQA¬Q˙Wf=IBs=Of=IB
66 62 64 65 3eqtr4rd KHLWHXB¬X˙WQA¬Q˙Wf=IBs=Of=sG
67 1 5 11 13 14 tendo0cl KHLWHOE
68 58 67 syl KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OOE
69 63 68 eqeltrd KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OsE
70 1 5 11 idltrn KHLWHIBT
71 58 70 syl KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OIBT
72 65 71 eqeltrd KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OfT
73 65 fveq2d KHLWHXB¬X˙WQA¬Q˙Wf=IBs=ORf=RIB
74 1 20 5 12 trlid0 KHLWHRIB=0.K
75 58 74 syl KHLWHXB¬X˙WQA¬Q˙Wf=IBs=ORIB=0.K
76 73 75 eqtrd KHLWHXB¬X˙WQA¬Q˙Wf=IBs=ORf=0.K
77 simpl1l KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OKHL
78 hlatl KHLKAtLat
79 77 78 syl KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OKAtLat
80 39 adantr KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OX˙WB
81 1 2 20 atl0le KAtLatX˙WB0.K˙X˙W
82 79 80 81 syl2anc KHLWHXB¬X˙WQA¬Q˙Wf=IBs=O0.K˙X˙W
83 76 82 eqbrtrd KHLWHXB¬X˙WQA¬Q˙Wf=IBs=ORf˙X˙W
84 72 83 63 jca31 KHLWHXB¬X˙WQA¬Q˙Wf=IBs=OfTRf˙X˙Ws=O
85 66 69 84 jca31 KHLWHXB¬X˙WQA¬Q˙Wf=IBs=Of=sGsEfTRf˙X˙Ws=O
86 57 85 impbida KHLWHXB¬X˙WQA¬Q˙Wf=sGsEfTRf˙X˙Ws=Of=IBs=O
87 44 86 bitrd KHLWHXB¬X˙WQA¬Q˙WfsIQfsIX˙Wf=IBs=O
88 opex fsV
89 88 elsn fsIBOfs=IBO
90 27 28 opth fs=IBOf=IBs=O
91 89 90 bitr2i f=IBs=OfsIBO
92 87 91 bitrdi KHLWHXB¬X˙WQA¬Q˙WfsIQfsIX˙WfsIBO
93 1 5 11 7 8 14 dvh0g KHLWH0˙=IBO
94 93 3ad2ant1 KHLWHXB¬X˙WQA¬Q˙W0˙=IBO
95 94 sneqd KHLWHXB¬X˙WQA¬Q˙W0˙=IBO
96 95 eleq2d KHLWHXB¬X˙WQA¬Q˙Wfs0˙fsIBO
97 92 96 bitr4d KHLWHXB¬X˙WQA¬Q˙WfsIQfsIX˙Wfs0˙
98 26 97 bitrid KHLWHXB¬X˙WQA¬Q˙WfsIQIX˙Wfs0˙
99 98 eqrelrdv2 RelIQIX˙WRel0˙KHLWHXB¬X˙WQA¬Q˙WIQIX˙W=0˙
100 18 24 25 99 syl21anc KHLWHXB¬X˙WQA¬Q˙WIQIX˙W=0˙