Metamath Proof Explorer


Theorem disjeqd

Description: Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021)

Ref Expression
Hypothesis disjeqd.1
|- ( ph -> A = B )
Assertion disjeqd
|- ( ph -> ( Disj A <-> Disj B ) )

Proof

Step Hyp Ref Expression
1 disjeqd.1
 |-  ( ph -> A = B )
2 disjeq
 |-  ( A = B -> ( Disj A <-> Disj B ) )
3 1 2 syl
 |-  ( ph -> ( Disj A <-> Disj B ) )