Metamath Proof Explorer


Theorem disjeqd

Description: Equality theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 22-Sep-2021)

Ref Expression
Hypothesis disjeqd.1 ( 𝜑𝐴 = 𝐵 )
Assertion disjeqd ( 𝜑 → ( Disj 𝐴 ↔ Disj 𝐵 ) )

Proof

Step Hyp Ref Expression
1 disjeqd.1 ( 𝜑𝐴 = 𝐵 )
2 disjeq ( 𝐴 = 𝐵 → ( Disj 𝐴 ↔ Disj 𝐵 ) )
3 1 2 syl ( 𝜑 → ( Disj 𝐴 ↔ Disj 𝐵 ) )