| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz |  |-  ( D e. NN -> D e. ZZ ) | 
						
							| 2 |  | nnne0 |  |-  ( D e. NN -> D =/= 0 ) | 
						
							| 3 | 1 2 | jca |  |-  ( D e. NN -> ( D e. ZZ /\ D =/= 0 ) ) | 
						
							| 4 |  | divalg |  |-  ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) ) | 
						
							| 5 |  | divalgb |  |-  ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> ( E! r e. ZZ E. q e. ZZ ( 0 <_ r /\ r < ( abs ` D ) /\ N = ( ( q x. D ) + r ) ) <-> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) ) | 
						
							| 6 | 4 5 | mpbid |  |-  ( ( N e. ZZ /\ D e. ZZ /\ D =/= 0 ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) | 
						
							| 7 | 6 | 3expb |  |-  ( ( N e. ZZ /\ ( D e. ZZ /\ D =/= 0 ) ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) | 
						
							| 8 | 3 7 | sylan2 |  |-  ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) ) | 
						
							| 9 |  | nnre |  |-  ( D e. NN -> D e. RR ) | 
						
							| 10 |  | nnnn0 |  |-  ( D e. NN -> D e. NN0 ) | 
						
							| 11 | 10 | nn0ge0d |  |-  ( D e. NN -> 0 <_ D ) | 
						
							| 12 | 9 11 | absidd |  |-  ( D e. NN -> ( abs ` D ) = D ) | 
						
							| 13 | 12 | breq2d |  |-  ( D e. NN -> ( r < ( abs ` D ) <-> r < D ) ) | 
						
							| 14 | 13 | anbi1d |  |-  ( D e. NN -> ( ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> ( r < D /\ D || ( N - r ) ) ) ) | 
						
							| 15 | 14 | reubidv |  |-  ( D e. NN -> ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( N e. ZZ /\ D e. NN ) -> ( E! r e. NN0 ( r < ( abs ` D ) /\ D || ( N - r ) ) <-> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) ) | 
						
							| 17 | 8 16 | mpbid |  |-  ( ( N e. ZZ /\ D e. NN ) -> E! r e. NN0 ( r < D /\ D || ( N - r ) ) ) |