Metamath Proof Explorer


Theorem divcan1i

Description: A cancellation law for division. (Contributed by NM, 18-May-1999)

Ref Expression
Hypotheses divclz.1
|- A e. CC
divclz.2
|- B e. CC
divcl.3
|- B =/= 0
Assertion divcan1i
|- ( ( A / B ) x. B ) = A

Proof

Step Hyp Ref Expression
1 divclz.1
 |-  A e. CC
2 divclz.2
 |-  B e. CC
3 divcl.3
 |-  B =/= 0
4 1 2 3 divcli
 |-  ( A / B ) e. CC
5 1 2 3 divcan2i
 |-  ( B x. ( A / B ) ) = A
6 2 4 5 mulcomli
 |-  ( ( A / B ) x. B ) = A