Description: A cancellation law for division. (Contributed by NM, 18-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divclz.1 | |- A e. CC |
|
divclz.2 | |- B e. CC |
||
divcl.3 | |- B =/= 0 |
||
Assertion | divcan1i | |- ( ( A / B ) x. B ) = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | |- A e. CC |
|
2 | divclz.2 | |- B e. CC |
|
3 | divcl.3 | |- B =/= 0 |
|
4 | 1 2 3 | divcli | |- ( A / B ) e. CC |
5 | 1 2 3 | divcan2i | |- ( B x. ( A / B ) ) = A |
6 | 2 4 5 | mulcomli | |- ( ( A / B ) x. B ) = A |