Description: An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divsassd.1 | |- ( ph -> A e. No ) |
|
| divsassd.2 | |- ( ph -> B e. No ) |
||
| divsassd.3 | |- ( ph -> C e. No ) |
||
| divsassd.4 | |- ( ph -> C =/= 0s ) |
||
| Assertion | divsassd | |- ( ph -> ( ( A x.s B ) /su C ) = ( A x.s ( B /su C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsassd.1 | |- ( ph -> A e. No ) |
|
| 2 | divsassd.2 | |- ( ph -> B e. No ) |
|
| 3 | divsassd.3 | |- ( ph -> C e. No ) |
|
| 4 | divsassd.4 | |- ( ph -> C =/= 0s ) |
|
| 5 | 3 4 | recsexd | |- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
| 6 | 1 2 3 4 5 | divsasswd | |- ( ph -> ( ( A x.s B ) /su C ) = ( A x.s ( B /su C ) ) ) |