Metamath Proof Explorer


Theorem divsassd

Description: An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divsassd.1
|- ( ph -> A e. No )
divsassd.2
|- ( ph -> B e. No )
divsassd.3
|- ( ph -> C e. No )
divsassd.4
|- ( ph -> C =/= 0s )
Assertion divsassd
|- ( ph -> ( ( A x.s B ) /su C ) = ( A x.s ( B /su C ) ) )

Proof

Step Hyp Ref Expression
1 divsassd.1
 |-  ( ph -> A e. No )
2 divsassd.2
 |-  ( ph -> B e. No )
3 divsassd.3
 |-  ( ph -> C e. No )
4 divsassd.4
 |-  ( ph -> C =/= 0s )
5 3 4 recsexd
 |-  ( ph -> E. x e. No ( C x.s x ) = 1s )
6 1 2 3 4 5 divsasswd
 |-  ( ph -> ( ( A x.s B ) /su C ) = ( A x.s ( B /su C ) ) )