Step |
Hyp |
Ref |
Expression |
1 |
|
divsasswd.1 |
|- ( ph -> A e. No ) |
2 |
|
divsasswd.2 |
|- ( ph -> B e. No ) |
3 |
|
divsasswd.3 |
|- ( ph -> C e. No ) |
4 |
|
divsasswd.4 |
|- ( ph -> C =/= 0s ) |
5 |
|
divsasswd.5 |
|- ( ph -> E. x e. No ( C x.s x ) = 1s ) |
6 |
2 3 4 5
|
divscan2wd |
|- ( ph -> ( C x.s ( B /su C ) ) = B ) |
7 |
6
|
oveq2d |
|- ( ph -> ( A x.s ( C x.s ( B /su C ) ) ) = ( A x.s B ) ) |
8 |
2 3 4 5
|
divsclwd |
|- ( ph -> ( B /su C ) e. No ) |
9 |
3 1 8
|
muls12d |
|- ( ph -> ( C x.s ( A x.s ( B /su C ) ) ) = ( A x.s ( C x.s ( B /su C ) ) ) ) |
10 |
1 2
|
mulscld |
|- ( ph -> ( A x.s B ) e. No ) |
11 |
10 3 4 5
|
divscan2wd |
|- ( ph -> ( C x.s ( ( A x.s B ) /su C ) ) = ( A x.s B ) ) |
12 |
7 9 11
|
3eqtr4rd |
|- ( ph -> ( C x.s ( ( A x.s B ) /su C ) ) = ( C x.s ( A x.s ( B /su C ) ) ) ) |
13 |
10 3 4 5
|
divsclwd |
|- ( ph -> ( ( A x.s B ) /su C ) e. No ) |
14 |
1 8
|
mulscld |
|- ( ph -> ( A x.s ( B /su C ) ) e. No ) |
15 |
13 14 3 4
|
mulscan1d |
|- ( ph -> ( ( C x.s ( ( A x.s B ) /su C ) ) = ( C x.s ( A x.s ( B /su C ) ) ) <-> ( ( A x.s B ) /su C ) = ( A x.s ( B /su C ) ) ) ) |
16 |
12 15
|
mpbid |
|- ( ph -> ( ( A x.s B ) /su C ) = ( A x.s ( B /su C ) ) ) |