| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulslid |
|- ( A e. No -> ( 1s x.s A ) = A ) |
| 2 |
|
1sno |
|- 1s e. No |
| 3 |
|
1sne0s |
|- 1s =/= 0s |
| 4 |
2 3
|
pm3.2i |
|- ( 1s e. No /\ 1s =/= 0s ) |
| 5 |
|
mulslid |
|- ( 1s e. No -> ( 1s x.s 1s ) = 1s ) |
| 6 |
2 5
|
ax-mp |
|- ( 1s x.s 1s ) = 1s |
| 7 |
|
oveq2 |
|- ( x = 1s -> ( 1s x.s x ) = ( 1s x.s 1s ) ) |
| 8 |
7
|
eqeq1d |
|- ( x = 1s -> ( ( 1s x.s x ) = 1s <-> ( 1s x.s 1s ) = 1s ) ) |
| 9 |
8
|
rspcev |
|- ( ( 1s e. No /\ ( 1s x.s 1s ) = 1s ) -> E. x e. No ( 1s x.s x ) = 1s ) |
| 10 |
2 6 9
|
mp2an |
|- E. x e. No ( 1s x.s x ) = 1s |
| 11 |
|
divsmulw |
|- ( ( ( A e. No /\ A e. No /\ ( 1s e. No /\ 1s =/= 0s ) ) /\ E. x e. No ( 1s x.s x ) = 1s ) -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
| 12 |
10 11
|
mpan2 |
|- ( ( A e. No /\ A e. No /\ ( 1s e. No /\ 1s =/= 0s ) ) -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
| 13 |
4 12
|
mp3an3 |
|- ( ( A e. No /\ A e. No ) -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
| 14 |
13
|
anidms |
|- ( A e. No -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
| 15 |
1 14
|
mpbird |
|- ( A e. No -> ( A /su 1s ) = A ) |