Step |
Hyp |
Ref |
Expression |
1 |
|
mulslid |
|- ( A e. No -> ( 1s x.s A ) = A ) |
2 |
|
1sno |
|- 1s e. No |
3 |
|
0slt1s |
|- 0s |
4 |
|
sgt0ne0 |
|- ( 0s 1s =/= 0s ) |
5 |
3 4
|
ax-mp |
|- 1s =/= 0s |
6 |
2 5
|
pm3.2i |
|- ( 1s e. No /\ 1s =/= 0s ) |
7 |
|
mulslid |
|- ( 1s e. No -> ( 1s x.s 1s ) = 1s ) |
8 |
2 7
|
ax-mp |
|- ( 1s x.s 1s ) = 1s |
9 |
|
oveq2 |
|- ( x = 1s -> ( 1s x.s x ) = ( 1s x.s 1s ) ) |
10 |
9
|
eqeq1d |
|- ( x = 1s -> ( ( 1s x.s x ) = 1s <-> ( 1s x.s 1s ) = 1s ) ) |
11 |
10
|
rspcev |
|- ( ( 1s e. No /\ ( 1s x.s 1s ) = 1s ) -> E. x e. No ( 1s x.s x ) = 1s ) |
12 |
2 8 11
|
mp2an |
|- E. x e. No ( 1s x.s x ) = 1s |
13 |
|
divsmulw |
|- ( ( ( A e. No /\ A e. No /\ ( 1s e. No /\ 1s =/= 0s ) ) /\ E. x e. No ( 1s x.s x ) = 1s ) -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
14 |
12 13
|
mpan2 |
|- ( ( A e. No /\ A e. No /\ ( 1s e. No /\ 1s =/= 0s ) ) -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
15 |
6 14
|
mp3an3 |
|- ( ( A e. No /\ A e. No ) -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
16 |
15
|
anidms |
|- ( A e. No -> ( ( A /su 1s ) = A <-> ( 1s x.s A ) = A ) ) |
17 |
1 16
|
mpbird |
|- ( A e. No -> ( A /su 1s ) = A ) |