Metamath Proof Explorer


Theorem divs1

Description: A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Assertion divs1 A No A / su 1 s = A

Proof

Step Hyp Ref Expression
1 mulslid A No 1 s s A = A
2 1sno 1 s No
3 1sne0s 1 s 0 s
4 2 3 pm3.2i 1 s No 1 s 0 s
5 mulslid 1 s No 1 s s 1 s = 1 s
6 2 5 ax-mp 1 s s 1 s = 1 s
7 oveq2 x = 1 s 1 s s x = 1 s s 1 s
8 7 eqeq1d x = 1 s 1 s s x = 1 s 1 s s 1 s = 1 s
9 8 rspcev 1 s No 1 s s 1 s = 1 s x No 1 s s x = 1 s
10 2 6 9 mp2an x No 1 s s x = 1 s
11 divsmulw A No A No 1 s No 1 s 0 s x No 1 s s x = 1 s A / su 1 s = A 1 s s A = A
12 10 11 mpan2 A No A No 1 s No 1 s 0 s A / su 1 s = A 1 s s A = A
13 4 12 mp3an3 A No A No A / su 1 s = A 1 s s A = A
14 13 anidms A No A / su 1 s = A 1 s s A = A
15 1 14 mpbird A No A / su 1 s = A