Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 1sno | |- 1s e. No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1s | |- 1s = ( { 0s } |s (/) ) |
|
2 | 0sno | |- 0s e. No |
|
3 | snelpwi | |- ( 0s e. No -> { 0s } e. ~P No ) |
|
4 | 2 3 | ax-mp | |- { 0s } e. ~P No |
5 | nulssgt | |- ( { 0s } e. ~P No -> { 0s } < |
|
6 | 4 5 | ax-mp | |- { 0s } < |
7 | scutcl | |- ( { 0s } < |
|
8 | 6 7 | ax-mp | |- ( { 0s } |s (/) ) e. No |
9 | 1 8 | eqeltri | |- 1s e. No |