Metamath Proof Explorer


Theorem 1sno

Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion 1sno
|- 1s e. No

Proof

Step Hyp Ref Expression
1 df-1s
 |-  1s = ( { 0s } |s (/) )
2 0sno
 |-  0s e. No
3 snelpwi
 |-  ( 0s e. No -> { 0s } e. ~P No )
4 2 3 ax-mp
 |-  { 0s } e. ~P No
5 nulssgt
 |-  ( { 0s } e. ~P No -> { 0s } <
6 4 5 ax-mp
 |-  { 0s } <
7 scutcl
 |-  ( { 0s } < ( { 0s } |s (/) ) e. No )
8 6 7 ax-mp
 |-  ( { 0s } |s (/) ) e. No
9 1 8 eqeltri
 |-  1s e. No