Description: Surreal zero is a surreal. (Contributed by Scott Fenton, 7-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 0sno | |- 0s e. No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-0s | |- 0s = ( (/) |s (/) ) |
|
2 | 0elpw | |- (/) e. ~P No |
|
3 | nulssgt | |- ( (/) e. ~P No -> (/) < |
|
4 | 2 3 | ax-mp | |- (/) < |
5 | scutcl | |- ( (/) < |
|
6 | 4 5 | ax-mp | |- ( (/) |s (/) ) e. No |
7 | 1 6 | eqeltri | |- 0s e. No |