Metamath Proof Explorer


Theorem nulssgt

Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulssgt
|- ( A e. ~P No -> A <

Proof

Step Hyp Ref Expression
1 id
 |-  ( A e. ~P No -> A e. ~P No )
2 0ex
 |-  (/) e. _V
3 2 a1i
 |-  ( A e. ~P No -> (/) e. _V )
4 elpwi
 |-  ( A e. ~P No -> A C_ No )
5 0ss
 |-  (/) C_ No
6 5 a1i
 |-  ( A e. ~P No -> (/) C_ No )
7 noel
 |-  -. y e. (/)
8 7 pm2.21i
 |-  ( y e. (/) -> x 
9 8 3ad2ant3
 |-  ( ( A e. ~P No /\ x e. A /\ y e. (/) ) -> x 
10 1 3 4 6 9 ssltd
 |-  ( A e. ~P No -> A <