Metamath Proof Explorer


Theorem nulssgt

Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulssgt A 𝒫 No A s

Proof

Step Hyp Ref Expression
1 id A 𝒫 No A 𝒫 No
2 0ex V
3 2 a1i A 𝒫 No V
4 elpwi A 𝒫 No A No
5 0ss No
6 5 a1i A 𝒫 No No
7 noel ¬ y
8 7 pm2.21i y x < s y
9 8 3ad2ant3 A 𝒫 No x A y x < s y
10 1 3 4 6 9 ssltd A 𝒫 No A s