Metamath Proof Explorer


Theorem nulssgt

Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulssgt ( 𝐴 ∈ 𝒫 No 𝐴 <<s ∅ )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ 𝒫 No 𝐴 ∈ 𝒫 No )
2 0ex ∅ ∈ V
3 2 a1i ( 𝐴 ∈ 𝒫 No → ∅ ∈ V )
4 elpwi ( 𝐴 ∈ 𝒫 No 𝐴 No )
5 0ss ∅ ⊆ No
6 5 a1i ( 𝐴 ∈ 𝒫 No → ∅ ⊆ No )
7 noel ¬ 𝑦 ∈ ∅
8 7 pm2.21i ( 𝑦 ∈ ∅ → 𝑥 <s 𝑦 )
9 8 3ad2ant3 ( ( 𝐴 ∈ 𝒫 No 𝑥𝐴𝑦 ∈ ∅ ) → 𝑥 <s 𝑦 )
10 1 3 4 6 9 ssltd ( 𝐴 ∈ 𝒫 No 𝐴 <<s ∅ )