Metamath Proof Explorer
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
nulssgt |
⊢ ( 𝐴 ∈ 𝒫 No → 𝐴 <<s ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) |
| 2 |
|
0ex |
⊢ ∅ ∈ V |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝒫 No → ∅ ∈ V ) |
| 4 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) |
| 5 |
|
0ss |
⊢ ∅ ⊆ No |
| 6 |
5
|
a1i |
⊢ ( 𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
| 7 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
| 8 |
7
|
pm2.21i |
⊢ ( 𝑦 ∈ ∅ → 𝑥 <s 𝑦 ) |
| 9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ∅ ) → 𝑥 <s 𝑦 ) |
| 10 |
1 3 4 6 9
|
ssltd |
⊢ ( 𝐴 ∈ 𝒫 No → 𝐴 <<s ∅ ) |