Step |
Hyp |
Ref |
Expression |
1 |
|
ssltss1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ⊆ No ) |
2 |
|
ssltex1 |
⊢ ( 𝐴 <<s 𝐵 → 𝐴 ∈ V ) |
3 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
4 |
|
ssltex2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ∈ V ) |
5 |
|
ssltsep |
⊢ ( 𝐴 <<s 𝐵 → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐵 𝑝 <s 𝑞 ) |
6 |
|
noeta2 |
⊢ ( ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝐵 ⊆ No ∧ 𝐵 ∈ V ) ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐵 𝑝 <s 𝑞 ) → ∃ 𝑦 ∈ No ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday ‘ 𝑦 ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) ) |
7 |
1 2 3 4 5 6
|
syl221anc |
⊢ ( 𝐴 <<s 𝐵 → ∃ 𝑦 ∈ No ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday ‘ 𝑦 ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) ) |
8 |
|
3simpa |
⊢ ( ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday ‘ 𝑦 ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) → ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) ) |
9 |
2
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) → 𝐴 ∈ V ) |
10 |
|
snex |
⊢ { 𝑦 } ∈ V |
11 |
9 10
|
jctir |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) → ( 𝐴 ∈ V ∧ { 𝑦 } ∈ V ) ) |
12 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) → 𝐴 ⊆ No ) |
13 |
|
snssi |
⊢ ( 𝑦 ∈ No → { 𝑦 } ⊆ No ) |
14 |
13
|
adantl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) → { 𝑦 } ⊆ No ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) → { 𝑦 } ⊆ No ) |
16 |
|
vex |
⊢ 𝑦 ∈ V |
17 |
|
breq2 |
⊢ ( 𝑞 = 𝑦 → ( 𝑝 <s 𝑞 ↔ 𝑝 <s 𝑦 ) ) |
18 |
16 17
|
ralsn |
⊢ ( ∀ 𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ↔ 𝑝 <s 𝑦 ) |
19 |
18
|
ralbii |
⊢ ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ↔ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) |
20 |
19
|
biimpri |
⊢ ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ) |
22 |
12 15 21
|
3jca |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) → ( 𝐴 ⊆ No ∧ { 𝑦 } ⊆ No ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ) ) |
23 |
|
brsslt |
⊢ ( 𝐴 <<s { 𝑦 } ↔ ( ( 𝐴 ∈ V ∧ { 𝑦 } ∈ V ) ∧ ( 𝐴 ⊆ No ∧ { 𝑦 } ⊆ No ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ) ) ) |
24 |
11 22 23
|
sylanbrc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ) → 𝐴 <<s { 𝑦 } ) |
25 |
24
|
ex |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) → ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 → 𝐴 <<s { 𝑦 } ) ) |
26 |
4
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → 𝐵 ∈ V ) |
27 |
26 10
|
jctil |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → ( { 𝑦 } ∈ V ∧ 𝐵 ∈ V ) ) |
28 |
14
|
adantr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → { 𝑦 } ⊆ No ) |
29 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → 𝐵 ⊆ No ) |
30 |
|
ralcom |
⊢ ( ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞 ∈ 𝐵 𝑝 <s 𝑞 ↔ ∀ 𝑞 ∈ 𝐵 ∀ 𝑝 ∈ { 𝑦 } 𝑝 <s 𝑞 ) |
31 |
|
breq1 |
⊢ ( 𝑝 = 𝑦 → ( 𝑝 <s 𝑞 ↔ 𝑦 <s 𝑞 ) ) |
32 |
16 31
|
ralsn |
⊢ ( ∀ 𝑝 ∈ { 𝑦 } 𝑝 <s 𝑞 ↔ 𝑦 <s 𝑞 ) |
33 |
32
|
ralbii |
⊢ ( ∀ 𝑞 ∈ 𝐵 ∀ 𝑝 ∈ { 𝑦 } 𝑝 <s 𝑞 ↔ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) |
34 |
30 33
|
sylbbr |
⊢ ( ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 → ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞 ∈ 𝐵 𝑝 <s 𝑞 ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞 ∈ 𝐵 𝑝 <s 𝑞 ) |
36 |
28 29 35
|
3jca |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → ( { 𝑦 } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞 ∈ 𝐵 𝑝 <s 𝑞 ) ) |
37 |
|
brsslt |
⊢ ( { 𝑦 } <<s 𝐵 ↔ ( ( { 𝑦 } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { 𝑦 } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞 ∈ 𝐵 𝑝 <s 𝑞 ) ) ) |
38 |
27 36 37
|
sylanbrc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → { 𝑦 } <<s 𝐵 ) |
39 |
38
|
ex |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) → ( ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 → { 𝑦 } <<s 𝐵 ) ) |
40 |
25 39
|
anim12d |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ) → ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) ) |
41 |
8 40
|
syl5 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑦 ∈ No ) → ( ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday ‘ 𝑦 ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) → ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) ) |
42 |
41
|
reximdva |
⊢ ( 𝐴 <<s 𝐵 → ( ∃ 𝑦 ∈ No ( ∀ 𝑝 ∈ 𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞 ∈ 𝐵 𝑦 <s 𝑞 ∧ ( bday ‘ 𝑦 ) ⊆ suc ∪ ( bday “ ( 𝐴 ∪ 𝐵 ) ) ) → ∃ 𝑦 ∈ No ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) ) |
43 |
7 42
|
mpd |
⊢ ( 𝐴 <<s 𝐵 → ∃ 𝑦 ∈ No ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) |
44 |
|
rabn0 |
⊢ ( { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ≠ ∅ ↔ ∃ 𝑦 ∈ No ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) |
45 |
43 44
|
sylibr |
⊢ ( 𝐴 <<s 𝐵 → { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ≠ ∅ ) |
46 |
|
ssrab2 |
⊢ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No |
47 |
46
|
a1i |
⊢ ( 𝐴 <<s 𝐵 → { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No ) |
48 |
|
simplr3 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝑟 ∈ No ) |
49 |
2
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝐴 ∈ V ) |
50 |
|
snex |
⊢ { 𝑟 } ∈ V |
51 |
49 50
|
jctir |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ( 𝐴 ∈ V ∧ { 𝑟 } ∈ V ) ) |
52 |
1
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝐴 ⊆ No ) |
53 |
|
snssi |
⊢ ( 𝑟 ∈ No → { 𝑟 } ⊆ No ) |
54 |
48 53
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → { 𝑟 } ⊆ No ) |
55 |
52
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ No ) |
56 |
|
simplr1 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝑝 ∈ No ) |
57 |
56
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑝 ∈ No ) |
58 |
48
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑟 ∈ No ) |
59 |
|
simplll |
⊢ ( ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) → 𝐴 <<s { 𝑝 } ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝐴 <<s { 𝑝 } ) |
61 |
|
ssltsep |
⊢ ( 𝐴 <<s { 𝑝 } → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦 ) |
62 |
60 61
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦 ) |
63 |
62
|
r19.21bi |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦 ) |
64 |
|
vex |
⊢ 𝑝 ∈ V |
65 |
|
breq2 |
⊢ ( 𝑦 = 𝑝 → ( 𝑥 <s 𝑦 ↔ 𝑥 <s 𝑝 ) ) |
66 |
64 65
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦 ↔ 𝑥 <s 𝑝 ) |
67 |
63 66
|
sylib |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 <s 𝑝 ) |
68 |
|
simprrl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝑝 <s 𝑟 ) |
69 |
68
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑝 <s 𝑟 ) |
70 |
55 57 58 67 69
|
slttrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 <s 𝑟 ) |
71 |
|
vex |
⊢ 𝑟 ∈ V |
72 |
|
breq2 |
⊢ ( 𝑦 = 𝑟 → ( 𝑥 <s 𝑦 ↔ 𝑥 <s 𝑟 ) ) |
73 |
71 72
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 ↔ 𝑥 <s 𝑟 ) |
74 |
70 73
|
sylibr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 ) |
75 |
74
|
ralrimiva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 ) |
76 |
52 54 75
|
3jca |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ( 𝐴 ⊆ No ∧ { 𝑟 } ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 ) ) |
77 |
|
brsslt |
⊢ ( 𝐴 <<s { 𝑟 } ↔ ( ( 𝐴 ∈ V ∧ { 𝑟 } ∈ V ) ∧ ( 𝐴 ⊆ No ∧ { 𝑟 } ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 ) ) ) |
78 |
51 76 77
|
sylanbrc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝐴 <<s { 𝑟 } ) |
79 |
4
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝐵 ∈ V ) |
80 |
79 50
|
jctil |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ( { 𝑟 } ∈ V ∧ 𝐵 ∈ V ) ) |
81 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝐵 ⊆ No ) |
82 |
48
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑟 ∈ No ) |
83 |
|
simplr2 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝑞 ∈ No ) |
84 |
83
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑞 ∈ No ) |
85 |
81
|
sselda |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ No ) |
86 |
|
simprrr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → 𝑟 <s 𝑞 ) |
87 |
86
|
adantr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑟 <s 𝑞 ) |
88 |
|
simplrr |
⊢ ( ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) → { 𝑞 } <<s 𝐵 ) |
89 |
88
|
adantl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → { 𝑞 } <<s 𝐵 ) |
90 |
|
ssltsep |
⊢ ( { 𝑞 } <<s 𝐵 → ∀ 𝑥 ∈ { 𝑞 } ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) |
91 |
89 90
|
syl |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ∀ 𝑥 ∈ { 𝑞 } ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) |
92 |
|
vex |
⊢ 𝑞 ∈ V |
93 |
|
breq1 |
⊢ ( 𝑥 = 𝑞 → ( 𝑥 <s 𝑦 ↔ 𝑞 <s 𝑦 ) ) |
94 |
93
|
ralbidv |
⊢ ( 𝑥 = 𝑞 → ( ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑞 <s 𝑦 ) ) |
95 |
92 94
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 𝑞 } ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑞 <s 𝑦 ) |
96 |
91 95
|
sylib |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ∀ 𝑦 ∈ 𝐵 𝑞 <s 𝑦 ) |
97 |
96
|
r19.21bi |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑞 <s 𝑦 ) |
98 |
82 84 85 87 97
|
slttrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑟 <s 𝑦 ) |
99 |
98
|
ralrimiva |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ∀ 𝑦 ∈ 𝐵 𝑟 <s 𝑦 ) |
100 |
|
breq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 <s 𝑦 ↔ 𝑟 <s 𝑦 ) ) |
101 |
100
|
ralbidv |
⊢ ( 𝑥 = 𝑟 → ( ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑟 <s 𝑦 ) ) |
102 |
71 101
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑟 <s 𝑦 ) |
103 |
99 102
|
sylibr |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) |
104 |
54 81 103
|
3jca |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ( { 𝑟 } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) |
105 |
|
brsslt |
⊢ ( { 𝑟 } <<s 𝐵 ↔ ( ( { 𝑟 } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { 𝑟 } ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) |
106 |
80 104 105
|
sylanbrc |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → { 𝑟 } <<s 𝐵 ) |
107 |
48 78 106
|
jca32 |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) ) ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) |
108 |
107
|
exp44 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 ∈ No ∧ 𝑞 ∈ No ∧ 𝑟 ∈ No ) ) → ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
109 |
108
|
ralrimivvva |
⊢ ( 𝐴 <<s 𝐵 → ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
110 |
|
sneq |
⊢ ( 𝑦 = 𝑝 → { 𝑦 } = { 𝑝 } ) |
111 |
110
|
breq2d |
⊢ ( 𝑦 = 𝑝 → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 𝑝 } ) ) |
112 |
110
|
breq1d |
⊢ ( 𝑦 = 𝑝 → ( { 𝑦 } <<s 𝐵 ↔ { 𝑝 } <<s 𝐵 ) ) |
113 |
111 112
|
anbi12d |
⊢ ( 𝑦 = 𝑝 → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ) ) |
114 |
113
|
ralrab |
⊢ ( ∀ 𝑝 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ↔ ∀ 𝑝 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
115 |
|
sneq |
⊢ ( 𝑦 = 𝑞 → { 𝑦 } = { 𝑞 } ) |
116 |
115
|
breq2d |
⊢ ( 𝑦 = 𝑞 → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 𝑞 } ) ) |
117 |
115
|
breq1d |
⊢ ( 𝑦 = 𝑞 → ( { 𝑦 } <<s 𝐵 ↔ { 𝑞 } <<s 𝐵 ) ) |
118 |
116 117
|
anbi12d |
⊢ ( 𝑦 = 𝑞 → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ) |
119 |
118
|
ralrab |
⊢ ( ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ↔ ∀ 𝑞 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) |
120 |
|
sneq |
⊢ ( 𝑦 = 𝑟 → { 𝑦 } = { 𝑟 } ) |
121 |
120
|
breq2d |
⊢ ( 𝑦 = 𝑟 → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 𝑟 } ) ) |
122 |
120
|
breq1d |
⊢ ( 𝑦 = 𝑟 → ( { 𝑦 } <<s 𝐵 ↔ { 𝑟 } <<s 𝐵 ) ) |
123 |
121 122
|
anbi12d |
⊢ ( 𝑦 = 𝑟 → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) |
124 |
123
|
elrab |
⊢ ( 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ↔ ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) |
125 |
124
|
imbi2i |
⊢ ( ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) |
126 |
125
|
ralbii |
⊢ ( ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) |
127 |
126
|
ralbii |
⊢ ( ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) |
128 |
|
r19.21v |
⊢ ( ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) |
129 |
128
|
ralbii |
⊢ ( ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ↔ ∀ 𝑞 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) |
130 |
119 127 129
|
3bitr4i |
⊢ ( ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) |
131 |
130
|
ralbii |
⊢ ( ∀ 𝑝 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑝 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) |
132 |
|
r19.21v |
⊢ ( ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
133 |
132
|
ralbii |
⊢ ( ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ∀ 𝑞 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
134 |
|
r19.21v |
⊢ ( ∀ 𝑞 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
135 |
133 134
|
bitri |
⊢ ( ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
136 |
135
|
ralbii |
⊢ ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ∀ 𝑝 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
137 |
114 131 136
|
3bitr4i |
⊢ ( ∀ 𝑝 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → ( 𝑟 ∈ No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ) |
138 |
109 137
|
sylibr |
⊢ ( 𝐴 <<s 𝐵 → ∀ 𝑝 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
139 |
|
nocvxmin |
⊢ ( ( { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ≠ ∅ ∧ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No ∧ ∀ 𝑝 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 ∈ No ( ( 𝑝 <s 𝑟 ∧ 𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) → ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
140 |
45 47 138 139
|
syl3anc |
⊢ ( 𝐴 <<s 𝐵 → ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |