Metamath Proof Explorer


Theorem conway

Description: Conway's Simplicity Theorem. Given A preceeding B , there is a unique surreal of minimal length separating them. This is a fundamental property of surreals and will be used (via surreal cuts) to prove many properties later on. Theorem from Alling p. 185. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion conway ( 𝐴 <<s 𝐵 → ∃! 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) )

Proof

Step Hyp Ref Expression
1 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
2 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
3 ssltss2 ( 𝐴 <<s 𝐵𝐵 No )
4 ssltex2 ( 𝐴 <<s 𝐵𝐵 ∈ V )
5 ssltsep ( 𝐴 <<s 𝐵 → ∀ 𝑝𝐴𝑞𝐵 𝑝 <s 𝑞 )
6 noeta2 ( ( ( 𝐴 No 𝐴 ∈ V ) ∧ ( 𝐵 No 𝐵 ∈ V ) ∧ ∀ 𝑝𝐴𝑞𝐵 𝑝 <s 𝑞 ) → ∃ 𝑦 No ( ∀ 𝑝𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ∧ ( bday 𝑦 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )
7 1 2 3 4 5 6 syl221anc ( 𝐴 <<s 𝐵 → ∃ 𝑦 No ( ∀ 𝑝𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ∧ ( bday 𝑦 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) )
8 3simpa ( ( ∀ 𝑝𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ∧ ( bday 𝑦 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) → ( ∀ 𝑝𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) )
9 2 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑝𝐴 𝑝 <s 𝑦 ) → 𝐴 ∈ V )
10 snex { 𝑦 } ∈ V
11 9 10 jctir ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑝𝐴 𝑝 <s 𝑦 ) → ( 𝐴 ∈ V ∧ { 𝑦 } ∈ V ) )
12 1 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑝𝐴 𝑝 <s 𝑦 ) → 𝐴 No )
13 snssi ( 𝑦 No → { 𝑦 } ⊆ No )
14 13 adantl ( ( 𝐴 <<s 𝐵𝑦 No ) → { 𝑦 } ⊆ No )
15 14 adantr ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑝𝐴 𝑝 <s 𝑦 ) → { 𝑦 } ⊆ No )
16 vex 𝑦 ∈ V
17 breq2 ( 𝑞 = 𝑦 → ( 𝑝 <s 𝑞𝑝 <s 𝑦 ) )
18 16 17 ralsn ( ∀ 𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞𝑝 <s 𝑦 )
19 18 ralbii ( ∀ 𝑝𝐴𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ↔ ∀ 𝑝𝐴 𝑝 <s 𝑦 )
20 19 biimpri ( ∀ 𝑝𝐴 𝑝 <s 𝑦 → ∀ 𝑝𝐴𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 )
21 20 adantl ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑝𝐴 𝑝 <s 𝑦 ) → ∀ 𝑝𝐴𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 )
22 12 15 21 3jca ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑝𝐴 𝑝 <s 𝑦 ) → ( 𝐴 No ∧ { 𝑦 } ⊆ No ∧ ∀ 𝑝𝐴𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ) )
23 brsslt ( 𝐴 <<s { 𝑦 } ↔ ( ( 𝐴 ∈ V ∧ { 𝑦 } ∈ V ) ∧ ( 𝐴 No ∧ { 𝑦 } ⊆ No ∧ ∀ 𝑝𝐴𝑞 ∈ { 𝑦 } 𝑝 <s 𝑞 ) ) )
24 11 22 23 sylanbrc ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑝𝐴 𝑝 <s 𝑦 ) → 𝐴 <<s { 𝑦 } )
25 24 ex ( ( 𝐴 <<s 𝐵𝑦 No ) → ( ∀ 𝑝𝐴 𝑝 <s 𝑦𝐴 <<s { 𝑦 } ) )
26 4 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → 𝐵 ∈ V )
27 26 10 jctil ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → ( { 𝑦 } ∈ V ∧ 𝐵 ∈ V ) )
28 14 adantr ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → { 𝑦 } ⊆ No )
29 3 ad2antrr ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → 𝐵 No )
30 ralcom ( ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞𝐵 𝑝 <s 𝑞 ↔ ∀ 𝑞𝐵𝑝 ∈ { 𝑦 } 𝑝 <s 𝑞 )
31 breq1 ( 𝑝 = 𝑦 → ( 𝑝 <s 𝑞𝑦 <s 𝑞 ) )
32 16 31 ralsn ( ∀ 𝑝 ∈ { 𝑦 } 𝑝 <s 𝑞𝑦 <s 𝑞 )
33 32 ralbii ( ∀ 𝑞𝐵𝑝 ∈ { 𝑦 } 𝑝 <s 𝑞 ↔ ∀ 𝑞𝐵 𝑦 <s 𝑞 )
34 30 33 sylbbr ( ∀ 𝑞𝐵 𝑦 <s 𝑞 → ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞𝐵 𝑝 <s 𝑞 )
35 34 adantl ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞𝐵 𝑝 <s 𝑞 )
36 28 29 35 3jca ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → ( { 𝑦 } ⊆ No 𝐵 No ∧ ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞𝐵 𝑝 <s 𝑞 ) )
37 brsslt ( { 𝑦 } <<s 𝐵 ↔ ( ( { 𝑦 } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { 𝑦 } ⊆ No 𝐵 No ∧ ∀ 𝑝 ∈ { 𝑦 } ∀ 𝑞𝐵 𝑝 <s 𝑞 ) ) )
38 27 36 37 sylanbrc ( ( ( 𝐴 <<s 𝐵𝑦 No ) ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → { 𝑦 } <<s 𝐵 )
39 38 ex ( ( 𝐴 <<s 𝐵𝑦 No ) → ( ∀ 𝑞𝐵 𝑦 <s 𝑞 → { 𝑦 } <<s 𝐵 ) )
40 25 39 anim12d ( ( 𝐴 <<s 𝐵𝑦 No ) → ( ( ∀ 𝑝𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ) → ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) )
41 8 40 syl5 ( ( 𝐴 <<s 𝐵𝑦 No ) → ( ( ∀ 𝑝𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ∧ ( bday 𝑦 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) → ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) )
42 41 reximdva ( 𝐴 <<s 𝐵 → ( ∃ 𝑦 No ( ∀ 𝑝𝐴 𝑝 <s 𝑦 ∧ ∀ 𝑞𝐵 𝑦 <s 𝑞 ∧ ( bday 𝑦 ) ⊆ suc ( bday “ ( 𝐴𝐵 ) ) ) → ∃ 𝑦 No ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ) )
43 7 42 mpd ( 𝐴 <<s 𝐵 → ∃ 𝑦 No ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) )
44 rabn0 ( { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ≠ ∅ ↔ ∃ 𝑦 No ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) )
45 43 44 sylibr ( 𝐴 <<s 𝐵 → { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ≠ ∅ )
46 ssrab2 { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No
47 46 a1i ( 𝐴 <<s 𝐵 → { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No )
48 simplr3 ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝑟 No )
49 2 ad2antrr ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝐴 ∈ V )
50 snex { 𝑟 } ∈ V
51 49 50 jctir ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ( 𝐴 ∈ V ∧ { 𝑟 } ∈ V ) )
52 1 ad2antrr ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝐴 No )
53 snssi ( 𝑟 No → { 𝑟 } ⊆ No )
54 48 53 syl ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → { 𝑟 } ⊆ No )
55 52 sselda ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → 𝑥 No )
56 simplr1 ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝑝 No )
57 56 adantr ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → 𝑝 No )
58 48 adantr ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → 𝑟 No )
59 simplll ( ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) → 𝐴 <<s { 𝑝 } )
60 59 adantl ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝐴 <<s { 𝑝 } )
61 ssltsep ( 𝐴 <<s { 𝑝 } → ∀ 𝑥𝐴𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦 )
62 60 61 syl ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ∀ 𝑥𝐴𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦 )
63 62 r19.21bi ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → ∀ 𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦 )
64 vex 𝑝 ∈ V
65 breq2 ( 𝑦 = 𝑝 → ( 𝑥 <s 𝑦𝑥 <s 𝑝 ) )
66 64 65 ralsn ( ∀ 𝑦 ∈ { 𝑝 } 𝑥 <s 𝑦𝑥 <s 𝑝 )
67 63 66 sylib ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → 𝑥 <s 𝑝 )
68 simprrl ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝑝 <s 𝑟 )
69 68 adantr ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → 𝑝 <s 𝑟 )
70 55 57 58 67 69 slttrd ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → 𝑥 <s 𝑟 )
71 vex 𝑟 ∈ V
72 breq2 ( 𝑦 = 𝑟 → ( 𝑥 <s 𝑦𝑥 <s 𝑟 ) )
73 71 72 ralsn ( ∀ 𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦𝑥 <s 𝑟 )
74 70 73 sylibr ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑥𝐴 ) → ∀ 𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 )
75 74 ralrimiva ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ∀ 𝑥𝐴𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 )
76 52 54 75 3jca ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ( 𝐴 No ∧ { 𝑟 } ⊆ No ∧ ∀ 𝑥𝐴𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 ) )
77 brsslt ( 𝐴 <<s { 𝑟 } ↔ ( ( 𝐴 ∈ V ∧ { 𝑟 } ∈ V ) ∧ ( 𝐴 No ∧ { 𝑟 } ⊆ No ∧ ∀ 𝑥𝐴𝑦 ∈ { 𝑟 } 𝑥 <s 𝑦 ) ) )
78 51 76 77 sylanbrc ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝐴 <<s { 𝑟 } )
79 4 ad2antrr ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝐵 ∈ V )
80 79 50 jctil ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ( { 𝑟 } ∈ V ∧ 𝐵 ∈ V ) )
81 3 ad2antrr ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝐵 No )
82 48 adantr ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑦𝐵 ) → 𝑟 No )
83 simplr2 ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝑞 No )
84 83 adantr ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑦𝐵 ) → 𝑞 No )
85 81 sselda ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑦𝐵 ) → 𝑦 No )
86 simprrr ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → 𝑟 <s 𝑞 )
87 86 adantr ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑦𝐵 ) → 𝑟 <s 𝑞 )
88 simplrr ( ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) → { 𝑞 } <<s 𝐵 )
89 88 adantl ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → { 𝑞 } <<s 𝐵 )
90 ssltsep ( { 𝑞 } <<s 𝐵 → ∀ 𝑥 ∈ { 𝑞 } ∀ 𝑦𝐵 𝑥 <s 𝑦 )
91 89 90 syl ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ∀ 𝑥 ∈ { 𝑞 } ∀ 𝑦𝐵 𝑥 <s 𝑦 )
92 vex 𝑞 ∈ V
93 breq1 ( 𝑥 = 𝑞 → ( 𝑥 <s 𝑦𝑞 <s 𝑦 ) )
94 93 ralbidv ( 𝑥 = 𝑞 → ( ∀ 𝑦𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦𝐵 𝑞 <s 𝑦 ) )
95 92 94 ralsn ( ∀ 𝑥 ∈ { 𝑞 } ∀ 𝑦𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦𝐵 𝑞 <s 𝑦 )
96 91 95 sylib ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ∀ 𝑦𝐵 𝑞 <s 𝑦 )
97 96 r19.21bi ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑦𝐵 ) → 𝑞 <s 𝑦 )
98 82 84 85 87 97 slttrd ( ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) ∧ 𝑦𝐵 ) → 𝑟 <s 𝑦 )
99 98 ralrimiva ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ∀ 𝑦𝐵 𝑟 <s 𝑦 )
100 breq1 ( 𝑥 = 𝑟 → ( 𝑥 <s 𝑦𝑟 <s 𝑦 ) )
101 100 ralbidv ( 𝑥 = 𝑟 → ( ∀ 𝑦𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦𝐵 𝑟 <s 𝑦 ) )
102 71 101 ralsn ( ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦𝐵 𝑥 <s 𝑦 ↔ ∀ 𝑦𝐵 𝑟 <s 𝑦 )
103 99 102 sylibr ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦𝐵 𝑥 <s 𝑦 )
104 54 81 103 3jca ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ( { 𝑟 } ⊆ No 𝐵 No ∧ ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦𝐵 𝑥 <s 𝑦 ) )
105 brsslt ( { 𝑟 } <<s 𝐵 ↔ ( ( { 𝑟 } ∈ V ∧ 𝐵 ∈ V ) ∧ ( { 𝑟 } ⊆ No 𝐵 No ∧ ∀ 𝑥 ∈ { 𝑟 } ∀ 𝑦𝐵 𝑥 <s 𝑦 ) ) )
106 80 104 105 sylanbrc ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → { 𝑟 } <<s 𝐵 )
107 48 78 106 jca32 ( ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) ∧ ( ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ∧ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) ∧ ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) ) ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) )
108 107 exp44 ( ( 𝐴 <<s 𝐵 ∧ ( 𝑝 No 𝑞 No 𝑟 No ) ) → ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
109 108 ralrimivvva ( 𝐴 <<s 𝐵 → ∀ 𝑝 No 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
110 sneq ( 𝑦 = 𝑝 → { 𝑦 } = { 𝑝 } )
111 110 breq2d ( 𝑦 = 𝑝 → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 𝑝 } ) )
112 110 breq1d ( 𝑦 = 𝑝 → ( { 𝑦 } <<s 𝐵 ↔ { 𝑝 } <<s 𝐵 ) )
113 111 112 anbi12d ( 𝑦 = 𝑝 → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) ) )
114 113 ralrab ( ∀ 𝑝 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ↔ ∀ 𝑝 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
115 sneq ( 𝑦 = 𝑞 → { 𝑦 } = { 𝑞 } )
116 115 breq2d ( 𝑦 = 𝑞 → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 𝑞 } ) )
117 115 breq1d ( 𝑦 = 𝑞 → ( { 𝑦 } <<s 𝐵 ↔ { 𝑞 } <<s 𝐵 ) )
118 116 117 anbi12d ( 𝑦 = 𝑞 → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) ) )
119 118 ralrab ( ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ↔ ∀ 𝑞 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) )
120 sneq ( 𝑦 = 𝑟 → { 𝑦 } = { 𝑟 } )
121 120 breq2d ( 𝑦 = 𝑟 → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 𝑟 } ) )
122 120 breq1d ( 𝑦 = 𝑟 → ( { 𝑦 } <<s 𝐵 ↔ { 𝑟 } <<s 𝐵 ) )
123 121 122 anbi12d ( 𝑦 = 𝑟 → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) )
124 123 elrab ( 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ↔ ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) )
125 124 imbi2i ( ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) )
126 125 ralbii ( ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) )
127 126 ralbii ( ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) )
128 r19.21v ( ∀ 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) )
129 128 ralbii ( ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ↔ ∀ 𝑞 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) )
130 119 127 129 3bitr4i ( ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) )
131 130 ralbii ( ∀ 𝑝 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑝 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) )
132 r19.21v ( ∀ 𝑟 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
133 132 ralbii ( ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ∀ 𝑞 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
134 r19.21v ( ∀ 𝑞 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
135 133 134 bitri ( ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
136 135 ralbii ( ∀ 𝑝 No 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) ↔ ∀ 𝑝 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ∀ 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
137 114 131 136 3bitr4i ( ∀ 𝑝 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ↔ ∀ 𝑝 No 𝑞 No 𝑟 No ( ( 𝐴 <<s { 𝑝 } ∧ { 𝑝 } <<s 𝐵 ) → ( ( 𝐴 <<s { 𝑞 } ∧ { 𝑞 } <<s 𝐵 ) → ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → ( 𝑟 No ∧ ( 𝐴 <<s { 𝑟 } ∧ { 𝑟 } <<s 𝐵 ) ) ) ) ) )
138 109 137 sylibr ( 𝐴 <<s 𝐵 → ∀ 𝑝 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) )
139 nocvxmin ( ( { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ≠ ∅ ∧ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No ∧ ∀ 𝑝 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑞 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ∀ 𝑟 No ( ( 𝑝 <s 𝑟𝑟 <s 𝑞 ) → 𝑟 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) → ∃! 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) )
140 45 47 138 139 syl3anc ( 𝐴 <<s 𝐵 → ∃! 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) )