Metamath Proof Explorer
Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
ssltss2 |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
brsslt |
⊢ ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) |
2 |
|
simpr2 |
⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) → 𝐵 ⊆ No ) |
3 |
1 2
|
sylbi |
⊢ ( 𝐴 <<s 𝐵 → 𝐵 ⊆ No ) |