Metamath Proof Explorer


Theorem brsslt

Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion brsslt ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 No 𝐵 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 df-sslt <<s = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎 No 𝑏 No ∧ ∀ 𝑥𝑎𝑦𝑏 𝑥 <s 𝑦 ) }
2 1 bropaex12 ( 𝐴 <<s 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
3 sseq1 ( 𝑎 = 𝐴 → ( 𝑎 No 𝐴 No ) )
4 raleq ( 𝑎 = 𝐴 → ( ∀ 𝑥𝑎𝑦𝑏 𝑥 <s 𝑦 ↔ ∀ 𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ) )
5 3 4 3anbi13d ( 𝑎 = 𝐴 → ( ( 𝑎 No 𝑏 No ∧ ∀ 𝑥𝑎𝑦𝑏 𝑥 <s 𝑦 ) ↔ ( 𝐴 No 𝑏 No ∧ ∀ 𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ) ) )
6 sseq1 ( 𝑏 = 𝐵 → ( 𝑏 No 𝐵 No ) )
7 raleq ( 𝑏 = 𝐵 → ( ∀ 𝑦𝑏 𝑥 <s 𝑦 ↔ ∀ 𝑦𝐵 𝑥 <s 𝑦 ) )
8 7 ralbidv ( 𝑏 = 𝐵 → ( ∀ 𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) )
9 6 8 3anbi23d ( 𝑏 = 𝐵 → ( ( 𝐴 No 𝑏 No ∧ ∀ 𝑥𝐴𝑦𝑏 𝑥 <s 𝑦 ) ↔ ( 𝐴 No 𝐵 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ) )
10 5 9 1 brabg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 <<s 𝐵 ↔ ( 𝐴 No 𝐵 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ) )
11 2 10 biadanii ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 No 𝐵 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ) )