Step |
Hyp |
Ref |
Expression |
1 |
|
df-sslt |
⊢ <<s = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ) } |
2 |
1
|
bropaex12 |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
3 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ No ↔ 𝐴 ⊆ No ) ) |
4 |
|
raleq |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ) ) |
5 |
3 4
|
3anbi13d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ) ↔ ( 𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ) ) ) |
6 |
|
sseq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ⊆ No ↔ 𝐵 ⊆ No ) ) |
7 |
|
raleq |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) |
9 |
6 8
|
3anbi23d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ) ↔ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) |
10 |
5 9 1
|
brabg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 <<s 𝐵 ↔ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) |
11 |
2 10
|
biadanii |
⊢ ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) |