Metamath Proof Explorer


Theorem brsslt

Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion brsslt AsBAVBVANoBNoxAyBx<sy

Proof

Step Hyp Ref Expression
1 df-sslt s=ab|aNobNoxaybx<sy
2 1 bropaex12 AsBAVBV
3 sseq1 a=AaNoANo
4 raleq a=Axaybx<syxAybx<sy
5 3 4 3anbi13d a=AaNobNoxaybx<syANobNoxAybx<sy
6 sseq1 b=BbNoBNo
7 raleq b=Bybx<syyBx<sy
8 7 ralbidv b=BxAybx<syxAyBx<sy
9 6 8 3anbi23d b=BANobNoxAybx<syANoBNoxAyBx<sy
10 5 9 1 brabg AVBVAsBANoBNoxAyBx<sy
11 2 10 biadanii AsBAVBVANoBNoxAyBx<sy