Metamath Proof Explorer


Definition df-sslt

Description: Define the relation that holds iff one set of surreals completely precedes another. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion df-sslt s=ab|aNobNoxaybx<sy

Detailed syntax breakdown

Step Hyp Ref Expression
0 csslt classs
1 va setvara
2 vb setvarb
3 1 cv setvara
4 csur classNo
5 3 4 wss wffaNo
6 2 cv setvarb
7 6 4 wss wffbNo
8 vx setvarx
9 vy setvary
10 8 cv setvarx
11 cslt class<s
12 9 cv setvary
13 10 12 11 wbr wffx<sy
14 13 9 6 wral wffybx<sy
15 14 8 3 wral wffxaybx<sy
16 5 7 15 w3a wffaNobNoxaybx<sy
17 16 1 2 copab classab|aNobNoxaybx<sy
18 0 17 wceq wffs=ab|aNobNoxaybx<sy