Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssltss2 | |- ( A < |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsslt | |- ( A < |
|
| 2 | simpr2 | |- ( ( ( A e. _V /\ B e. _V ) /\ ( A C_ No /\ B C_ No /\ A. x e. A A. y e. B x |
|
| 3 | 1 2 | sylbi | |- ( A < |