Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ssltss2 | |- ( A < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt | |- ( A < |
|
2 | simpr2 | |- ( ( ( A e. _V /\ B e. _V ) /\ ( A C_ No /\ B C_ No /\ A. x e. A A. y e. B x |
|
3 | 1 2 | sylbi | |- ( A < |