Metamath Proof Explorer


Theorem ssltss2

Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion ssltss2 AsBBNo

Proof

Step Hyp Ref Expression
1 brsslt AsBAVBVANoBNoxAyBx<sy
2 simpr2 AVBVANoBNoxAyBx<syBNo
3 1 2 sylbi AsBBNo