Metamath Proof Explorer


Theorem ssltss2

Description: The second argument of surreal set is a set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion ssltss2 A s B B No

Proof

Step Hyp Ref Expression
1 brsslt A s B A V B V A No B No x A y B x < s y
2 simpr2 A V B V A No B No x A y B x < s y B No
3 1 2 sylbi A s B B No