Description: The separation property of surreal set less than. (Contributed by Scott Fenton, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ssltsep | ⊢ ( 𝐴 <<s 𝐵 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brsslt | ⊢ ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) | |
2 | simpr3 | ⊢ ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) | |
3 | 1 2 | sylbi | ⊢ ( 𝐴 <<s 𝐵 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) |