Step |
Hyp |
Ref |
Expression |
1 |
|
ssltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
ssltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
3 |
|
ssltd.3 |
⊢ ( 𝜑 → 𝐴 ⊆ No ) |
4 |
|
ssltd.4 |
⊢ ( 𝜑 → 𝐵 ⊆ No ) |
5 |
|
ssltd.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝑥 <s 𝑦 ) |
6 |
1
|
elexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
7 |
2
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
8 |
5
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 <s 𝑦 ) |
9 |
8
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) |
10 |
3 4 9
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) |
11 |
|
brsslt |
⊢ ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 <s 𝑦 ) ) ) |
12 |
6 7 10 11
|
syl21anbrc |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |