Metamath Proof Explorer


Theorem ssltd

Description: Deduce surreal set less than. (Contributed by Scott Fenton, 24-Sep-2024)

Ref Expression
Hypotheses ssltd.1 ( 𝜑𝐴𝑉 )
ssltd.2 ( 𝜑𝐵𝑊 )
ssltd.3 ( 𝜑𝐴 No )
ssltd.4 ( 𝜑𝐵 No )
ssltd.5 ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝑥 <s 𝑦 )
Assertion ssltd ( 𝜑𝐴 <<s 𝐵 )

Proof

Step Hyp Ref Expression
1 ssltd.1 ( 𝜑𝐴𝑉 )
2 ssltd.2 ( 𝜑𝐵𝑊 )
3 ssltd.3 ( 𝜑𝐴 No )
4 ssltd.4 ( 𝜑𝐵 No )
5 ssltd.5 ( ( 𝜑𝑥𝐴𝑦𝐵 ) → 𝑥 <s 𝑦 )
6 1 elexd ( 𝜑𝐴 ∈ V )
7 2 elexd ( 𝜑𝐵 ∈ V )
8 5 3expb ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝑥 <s 𝑦 )
9 8 ralrimivva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 )
10 3 4 9 3jca ( 𝜑 → ( 𝐴 No 𝐵 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) )
11 brsslt ( 𝐴 <<s 𝐵 ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 𝐴 No 𝐵 No ∧ ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ) ) )
12 6 7 10 11 syl21anbrc ( 𝜑𝐴 <<s 𝐵 )