Metamath Proof Explorer


Theorem ssltd

Description: Deduce surreal set less-than. (Contributed by Scott Fenton, 24-Sep-2024)

Ref Expression
Hypotheses ssltd.1 φAV
ssltd.2 φBW
ssltd.3 φANo
ssltd.4 φBNo
ssltd.5 φxAyBx<sy
Assertion ssltd φAsB

Proof

Step Hyp Ref Expression
1 ssltd.1 φAV
2 ssltd.2 φBW
3 ssltd.3 φANo
4 ssltd.4 φBNo
5 ssltd.5 φxAyBx<sy
6 1 elexd φAV
7 2 elexd φBV
8 5 3expb φxAyBx<sy
9 8 ralrimivva φxAyBx<sy
10 3 4 9 3jca φANoBNoxAyBx<sy
11 brsslt AsBAVBVANoBNoxAyBx<sy
12 6 7 10 11 syl21anbrc φAsB