Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Surreal numbers: Conway cuts
ssltd
Next ⟩
ssltsepc
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssltd
Description:
Deduce surreal set less than.
(Contributed by
Scott Fenton
, 24-Sep-2024)
Ref
Expression
Hypotheses
ssltd.1
⊢
φ
→
A
∈
V
ssltd.2
⊢
φ
→
B
∈
W
ssltd.3
⊢
φ
→
A
⊆
No
ssltd.4
⊢
φ
→
B
⊆
No
ssltd.5
⊢
φ
∧
x
∈
A
∧
y
∈
B
→
x
<
s
y
Assertion
ssltd
⊢
φ
→
A
≪
s
B
Proof
Step
Hyp
Ref
Expression
1
ssltd.1
⊢
φ
→
A
∈
V
2
ssltd.2
⊢
φ
→
B
∈
W
3
ssltd.3
⊢
φ
→
A
⊆
No
4
ssltd.4
⊢
φ
→
B
⊆
No
5
ssltd.5
⊢
φ
∧
x
∈
A
∧
y
∈
B
→
x
<
s
y
6
1
elexd
⊢
φ
→
A
∈
V
7
2
elexd
⊢
φ
→
B
∈
V
8
5
3expb
⊢
φ
∧
x
∈
A
∧
y
∈
B
→
x
<
s
y
9
8
ralrimivva
⊢
φ
→
∀
x
∈
A
∀
y
∈
B
x
<
s
y
10
3
4
9
3jca
⊢
φ
→
A
⊆
No
∧
B
⊆
No
∧
∀
x
∈
A
∀
y
∈
B
x
<
s
y
11
brsslt
⊢
A
≪
s
B
↔
A
∈
V
∧
B
∈
V
∧
A
⊆
No
∧
B
⊆
No
∧
∀
x
∈
A
∀
y
∈
B
x
<
s
y
12
6
7
10
11
syl21anbrc
⊢
φ
→
A
≪
s
B