Metamath Proof Explorer


Theorem ssltsn

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses ssltsn.1 φ A No
ssltsn.2 φ B No
ssltsn.3 φ A < s B
Assertion ssltsn φ A s B

Proof

Step Hyp Ref Expression
1 ssltsn.1 φ A No
2 ssltsn.2 φ B No
3 ssltsn.3 φ A < s B
4 1 2 ssltsnb φ A s B A < s B
5 3 4 mpbird φ A s B