Metamath Proof Explorer
Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ssltsn.1 |
|
|
|
ssltsn.2 |
|
|
|
ssltsn.3 |
|
|
Assertion |
ssltsn |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltsn.1 |
|
| 2 |
|
ssltsn.2 |
|
| 3 |
|
ssltsn.3 |
|
| 4 |
1 2
|
ssltsnb |
|
| 5 |
3 4
|
mpbird |
|