Metamath Proof Explorer


Theorem ssltsn

Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)

Ref Expression
Hypotheses ssltsn.1
|- ( ph -> A e. No )
ssltsn.2
|- ( ph -> B e. No )
ssltsn.3
|- ( ph -> A 
Assertion ssltsn
|- ( ph -> { A } <

Proof

Step Hyp Ref Expression
1 ssltsn.1
 |-  ( ph -> A e. No )
2 ssltsn.2
 |-  ( ph -> B e. No )
3 ssltsn.3
 |-  ( ph -> A 
4 1 2 ssltsnb
 |-  ( ph -> ( { A } < A 
5 3 4 mpbird
 |-  ( ph -> { A } <