Metamath Proof Explorer
Description: Surreal set less-than of two singletons. (Contributed by Scott Fenton, 17-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ssltsn.1 |
|- ( ph -> A e. No ) |
|
|
ssltsn.2 |
|- ( ph -> B e. No ) |
|
|
ssltsn.3 |
|- ( ph -> A |
|
Assertion |
ssltsn |
|- ( ph -> { A } < |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltsn.1 |
|- ( ph -> A e. No ) |
| 2 |
|
ssltsn.2 |
|- ( ph -> B e. No ) |
| 3 |
|
ssltsn.3 |
|- ( ph -> A |
| 4 |
1 2
|
ssltsnb |
|- ( ph -> ( { A } < A |
| 5 |
3 4
|
mpbird |
|- ( ph -> { A } < |