Description: Two elements of separated sets obey less than. (Contributed by Scott Fenton, 20-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ssltsepc | |- ( ( A < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltsep | |- ( A < |
|
2 | breq1 | |- ( x = X -> ( x |
|
3 | breq2 | |- ( y = Y -> ( X |
|
4 | 2 3 | rspc2va | |- ( ( ( X e. A /\ Y e. B ) /\ A. x e. A A. y e. B x |
5 | 4 | ancoms | |- ( ( A. x e. A A. y e. B x |
6 | 1 5 | sylan | |- ( ( A < |
7 | 6 | 3impb | |- ( ( A < |