Metamath Proof Explorer


Theorem ssltsepc

Description: Two elements of separated sets obey less than. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion ssltsepc
|- ( ( A < X 

Proof

Step Hyp Ref Expression
1 ssltsep
 |-  ( A < A. x e. A A. y e. B x 
2 breq1
 |-  ( x = X -> ( x  X 
3 breq2
 |-  ( y = Y -> ( X  X 
4 2 3 rspc2va
 |-  ( ( ( X e. A /\ Y e. B ) /\ A. x e. A A. y e. B x  X 
5 4 ancoms
 |-  ( ( A. x e. A A. y e. B x  X 
6 1 5 sylan
 |-  ( ( A < X 
7 6 3impb
 |-  ( ( A < X