Metamath Proof Explorer


Theorem ssltsepcd

Description: Two elements of separated sets obey less than. Deduction form of ssltsepc . (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Hypotheses ssltsepcd.1
|- ( ph -> A <
ssltsepcd.2
|- ( ph -> X e. A )
ssltsepcd.3
|- ( ph -> Y e. B )
Assertion ssltsepcd
|- ( ph -> X 

Proof

Step Hyp Ref Expression
1 ssltsepcd.1
 |-  ( ph -> A <
2 ssltsepcd.2
 |-  ( ph -> X e. A )
3 ssltsepcd.3
 |-  ( ph -> Y e. B )
4 ssltsepc
 |-  ( ( A < X 
5 1 2 3 4 syl3anc
 |-  ( ph -> X