Metamath Proof Explorer


Theorem sssslt1

Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sssslt1
|- ( ( A < C <

Proof

Step Hyp Ref Expression
1 ssltex1
 |-  ( A < A e. _V )
2 1 adantr
 |-  ( ( A < A e. _V )
3 simpr
 |-  ( ( A < C C_ A )
4 2 3 ssexd
 |-  ( ( A < C e. _V )
5 ssltex2
 |-  ( A < B e. _V )
6 5 adantr
 |-  ( ( A < B e. _V )
7 ssltss1
 |-  ( A < A C_ No )
8 7 adantr
 |-  ( ( A < A C_ No )
9 3 8 sstrd
 |-  ( ( A < C C_ No )
10 ssltss2
 |-  ( A < B C_ No )
11 10 adantr
 |-  ( ( A < B C_ No )
12 ssltsep
 |-  ( A < A. x e. A A. y e. B x 
13 ssralv
 |-  ( C C_ A -> ( A. x e. A A. y e. B x  A. x e. C A. y e. B x 
14 12 13 mpan9
 |-  ( ( A < A. x e. C A. y e. B x 
15 9 11 14 3jca
 |-  ( ( A < ( C C_ No /\ B C_ No /\ A. x e. C A. y e. B x 
16 brsslt
 |-  ( C < ( ( C e. _V /\ B e. _V ) /\ ( C C_ No /\ B C_ No /\ A. x e. C A. y e. B x 
17 4 6 15 16 syl21anbrc
 |-  ( ( A < C <