Metamath Proof Explorer


Theorem sssslt1

Description: Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sssslt1 AsBCACsB

Proof

Step Hyp Ref Expression
1 ssltex1 AsBAV
2 1 adantr AsBCAAV
3 simpr AsBCACA
4 2 3 ssexd AsBCACV
5 ssltex2 AsBBV
6 5 adantr AsBCABV
7 ssltss1 AsBANo
8 7 adantr AsBCAANo
9 3 8 sstrd AsBCACNo
10 ssltss2 AsBBNo
11 10 adantr AsBCABNo
12 ssltsep AsBxAyBx<sy
13 ssralv CAxAyBx<syxCyBx<sy
14 12 13 mpan9 AsBCAxCyBx<sy
15 9 11 14 3jca AsBCACNoBNoxCyBx<sy
16 brsslt CsBCVBVCNoBNoxCyBx<sy
17 4 6 15 16 syl21anbrc AsBCACsB