Metamath Proof Explorer


Theorem sssslt1

Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sssslt1 A s B C A C s B

Proof

Step Hyp Ref Expression
1 ssltex1 A s B A V
2 1 adantr A s B C A A V
3 simpr A s B C A C A
4 2 3 ssexd A s B C A C V
5 ssltex2 A s B B V
6 5 adantr A s B C A B V
7 ssltss1 A s B A No
8 7 adantr A s B C A A No
9 3 8 sstrd A s B C A C No
10 ssltss2 A s B B No
11 10 adantr A s B C A B No
12 ssltsep A s B x A y B x < s y
13 ssralv C A x A y B x < s y x C y B x < s y
14 12 13 mpan9 A s B C A x C y B x < s y
15 9 11 14 3jca A s B C A C No B No x C y B x < s y
16 brsslt C s B C V B V C No B No x C y B x < s y
17 4 6 15 16 syl21anbrc A s B C A C s B