Metamath Proof Explorer


Theorem sssslt2

Description: Relation between surreal set less-than and subset. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sssslt2 AsBCBAsC

Proof

Step Hyp Ref Expression
1 ssltex1 AsBAV
2 1 adantr AsBCBAV
3 ssltex2 AsBBV
4 3 adantr AsBCBBV
5 simpr AsBCBCB
6 4 5 ssexd AsBCBCV
7 ssltss1 AsBANo
8 7 adantr AsBCBANo
9 ssltss2 AsBBNo
10 9 adantr AsBCBBNo
11 5 10 sstrd AsBCBCNo
12 ssltsep AsBxAyBx<sy
13 ssralv CByBx<syyCx<sy
14 13 ralimdv CBxAyBx<syxAyCx<sy
15 12 14 mpan9 AsBCBxAyCx<sy
16 8 11 15 3jca AsBCBANoCNoxAyCx<sy
17 brsslt AsCAVCVANoCNoxAyCx<sy
18 2 6 16 17 syl21anbrc AsBCBAsC