Metamath Proof Explorer


Theorem nulsslt

Description: The empty set is less-than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulsslt A𝒫NosA

Proof

Step Hyp Ref Expression
1 0ex V
2 1 a1i A𝒫NoV
3 id A𝒫NoA𝒫No
4 0ss No
5 4 a1i A𝒫NoNo
6 elpwi A𝒫NoANo
7 noel ¬x
8 7 pm2.21i xx<sy
9 8 3ad2ant2 A𝒫NoxyAx<sy
10 2 3 5 6 9 ssltd A𝒫NosA