Metamath Proof Explorer


Theorem nulsslt

Description: The empty set is less than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulsslt
|- ( A e. ~P No -> (/) <

Proof

Step Hyp Ref Expression
1 0ex
 |-  (/) e. _V
2 1 a1i
 |-  ( A e. ~P No -> (/) e. _V )
3 id
 |-  ( A e. ~P No -> A e. ~P No )
4 0ss
 |-  (/) C_ No
5 4 a1i
 |-  ( A e. ~P No -> (/) C_ No )
6 elpwi
 |-  ( A e. ~P No -> A C_ No )
7 noel
 |-  -. x e. (/)
8 7 pm2.21i
 |-  ( x e. (/) -> x 
9 8 3ad2ant2
 |-  ( ( A e. ~P No /\ x e. (/) /\ y e. A ) -> x 
10 2 3 5 6 9 ssltd
 |-  ( A e. ~P No -> (/) <