Metamath Proof Explorer


Theorem nulsslt

Description: The empty set is less than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulsslt
|- ( A e. ~P No -> (/) <

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. ~P No -> A e. _V )
2 0ex
 |-  (/) e. _V
3 1 2 jctil
 |-  ( A e. ~P No -> ( (/) e. _V /\ A e. _V ) )
4 0ss
 |-  (/) C_ No
5 4 a1i
 |-  ( A e. ~P No -> (/) C_ No )
6 elpwi
 |-  ( A e. ~P No -> A C_ No )
7 ral0
 |-  A. x e. (/) A. y e. A x 
8 7 a1i
 |-  ( A e. ~P No -> A. x e. (/) A. y e. A x 
9 5 6 8 3jca
 |-  ( A e. ~P No -> ( (/) C_ No /\ A C_ No /\ A. x e. (/) A. y e. A x 
10 brsslt
 |-  ( (/) < ( ( (/) e. _V /\ A e. _V ) /\ ( (/) C_ No /\ A C_ No /\ A. x e. (/) A. y e. A x 
11 3 9 10 sylanbrc
 |-  ( A e. ~P No -> (/) <