Description: Deduce surreal set less than. (Contributed by Scott Fenton, 24-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssltd.1 | |- ( ph -> A e. V ) |
|
ssltd.2 | |- ( ph -> B e. W ) |
||
ssltd.3 | |- ( ph -> A C_ No ) |
||
ssltd.4 | |- ( ph -> B C_ No ) |
||
ssltd.5 | |- ( ( ph /\ x e. A /\ y e. B ) -> x |
||
Assertion | ssltd | |- ( ph -> A < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltd.1 | |- ( ph -> A e. V ) |
|
2 | ssltd.2 | |- ( ph -> B e. W ) |
|
3 | ssltd.3 | |- ( ph -> A C_ No ) |
|
4 | ssltd.4 | |- ( ph -> B C_ No ) |
|
5 | ssltd.5 | |- ( ( ph /\ x e. A /\ y e. B ) -> x |
|
6 | 1 | elexd | |- ( ph -> A e. _V ) |
7 | 2 | elexd | |- ( ph -> B e. _V ) |
8 | 5 | 3expb | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> x |
9 | 8 | ralrimivva | |- ( ph -> A. x e. A A. y e. B x |
10 | 3 4 9 | 3jca | |- ( ph -> ( A C_ No /\ B C_ No /\ A. x e. A A. y e. B x |
11 | brsslt | |- ( A < |
|
12 | 6 7 10 11 | syl21anbrc | |- ( ph -> A < |