Metamath Proof Explorer


Theorem ssltd

Description: Deduce surreal set less than. (Contributed by Scott Fenton, 24-Sep-2024)

Ref Expression
Hypotheses ssltd.1
|- ( ph -> A e. V )
ssltd.2
|- ( ph -> B e. W )
ssltd.3
|- ( ph -> A C_ No )
ssltd.4
|- ( ph -> B C_ No )
ssltd.5
|- ( ( ph /\ x e. A /\ y e. B ) -> x 
Assertion ssltd
|- ( ph -> A <

Proof

Step Hyp Ref Expression
1 ssltd.1
 |-  ( ph -> A e. V )
2 ssltd.2
 |-  ( ph -> B e. W )
3 ssltd.3
 |-  ( ph -> A C_ No )
4 ssltd.4
 |-  ( ph -> B C_ No )
5 ssltd.5
 |-  ( ( ph /\ x e. A /\ y e. B ) -> x 
6 1 elexd
 |-  ( ph -> A e. _V )
7 2 elexd
 |-  ( ph -> B e. _V )
8 5 3expb
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> x 
9 8 ralrimivva
 |-  ( ph -> A. x e. A A. y e. B x 
10 3 4 9 3jca
 |-  ( ph -> ( A C_ No /\ B C_ No /\ A. x e. A A. y e. B x 
11 brsslt
 |-  ( A < ( ( A e. _V /\ B e. _V ) /\ ( A C_ No /\ B C_ No /\ A. x e. A A. y e. B x 
12 6 7 10 11 syl21anbrc
 |-  ( ph -> A <