Metamath Proof Explorer
Description: The empty set is less than any set of surreals. (Contributed by Scott
Fenton, 8-Dec-2021)
|
|
Ref |
Expression |
|
Assertion |
nulsslt |
⊢ ( 𝐴 ∈ 𝒫 No → ∅ <<s 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
1
|
a1i |
⊢ ( 𝐴 ∈ 𝒫 No → ∅ ∈ V ) |
3 |
|
id |
⊢ ( 𝐴 ∈ 𝒫 No → 𝐴 ∈ 𝒫 No ) |
4 |
|
0ss |
⊢ ∅ ⊆ No |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ 𝒫 No → ∅ ⊆ No ) |
6 |
|
elpwi |
⊢ ( 𝐴 ∈ 𝒫 No → 𝐴 ⊆ No ) |
7 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
8 |
7
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → 𝑥 <s 𝑦 ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝒫 No ∧ 𝑥 ∈ ∅ ∧ 𝑦 ∈ 𝐴 ) → 𝑥 <s 𝑦 ) |
10 |
2 3 5 6 9
|
ssltd |
⊢ ( 𝐴 ∈ 𝒫 No → ∅ <<s 𝐴 ) |