Metamath Proof Explorer


Theorem nulsslt

Description: The empty set is less than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion nulsslt ( 𝐴 ∈ 𝒫 No → ∅ <<s 𝐴 )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 1 a1i ( 𝐴 ∈ 𝒫 No → ∅ ∈ V )
3 id ( 𝐴 ∈ 𝒫 No 𝐴 ∈ 𝒫 No )
4 0ss ∅ ⊆ No
5 4 a1i ( 𝐴 ∈ 𝒫 No → ∅ ⊆ No )
6 elpwi ( 𝐴 ∈ 𝒫 No 𝐴 No )
7 noel ¬ 𝑥 ∈ ∅
8 7 pm2.21i ( 𝑥 ∈ ∅ → 𝑥 <s 𝑦 )
9 8 3ad2ant2 ( ( 𝐴 ∈ 𝒫 No 𝑥 ∈ ∅ ∧ 𝑦𝐴 ) → 𝑥 <s 𝑦 )
10 2 3 5 6 9 ssltd ( 𝐴 ∈ 𝒫 No → ∅ <<s 𝐴 )