| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssltex1 | ⊢ ( 𝐴  <<s  𝐵  →  𝐴  ∈  V ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐴  ∈  V ) | 
						
							| 3 |  | ssltex2 | ⊢ ( 𝐴  <<s  𝐵  →  𝐵  ∈  V ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐶  ⊆  𝐵 ) | 
						
							| 6 | 4 5 | ssexd | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐶  ∈  V ) | 
						
							| 7 |  | ssltss1 | ⊢ ( 𝐴  <<s  𝐵  →  𝐴  ⊆   No  ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐴  ⊆   No  ) | 
						
							| 9 |  | ssltss2 | ⊢ ( 𝐴  <<s  𝐵  →  𝐵  ⊆   No  ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐵  ⊆   No  ) | 
						
							| 11 | 5 10 | sstrd | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐶  ⊆   No  ) | 
						
							| 12 |  | ssltsep | ⊢ ( 𝐴  <<s  𝐵  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  <s  𝑦 ) | 
						
							| 13 |  | ssralv | ⊢ ( 𝐶  ⊆  𝐵  →  ( ∀ 𝑦  ∈  𝐵 𝑥  <s  𝑦  →  ∀ 𝑦  ∈  𝐶 𝑥  <s  𝑦 ) ) | 
						
							| 14 | 13 | ralimdv | ⊢ ( 𝐶  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 𝑥  <s  𝑦  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 𝑥  <s  𝑦 ) ) | 
						
							| 15 | 12 14 | mpan9 | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 𝑥  <s  𝑦 ) | 
						
							| 16 | 8 11 15 | 3jca | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  ( 𝐴  ⊆   No   ∧  𝐶  ⊆   No   ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 𝑥  <s  𝑦 ) ) | 
						
							| 17 |  | brsslt | ⊢ ( 𝐴  <<s  𝐶  ↔  ( ( 𝐴  ∈  V  ∧  𝐶  ∈  V )  ∧  ( 𝐴  ⊆   No   ∧  𝐶  ⊆   No   ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐶 𝑥  <s  𝑦 ) ) ) | 
						
							| 18 | 2 6 16 17 | syl21anbrc | ⊢ ( ( 𝐴  <<s  𝐵  ∧  𝐶  ⊆  𝐵 )  →  𝐴  <<s  𝐶 ) |